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ABSTRACT 

Two main problems are analyzed and discussed in this thesis. First, a 

detailed derivation of the exact solution for the inhomogeneous Helmholtz 

equation for a free-space propagation problem when the square of the index of 

refraction is a linear function of depth and the input is an omnidirectional point 

source is performed and discussed. The exact solution is in terms of Airy and 

Bairy functions. Second, the accuracy of the Recursive Ray Acoustics (RRA) 

Algorithm was tested by generating test cases using a sound-speed profile with the 

square of the index of refraction a linear function of depth. The acoustic pressure 

(amplitude and phase) calculations obtained from the RRA Algorithm were then 

compared to the exact "Airy function" solution. Computer simulation results 

indicate that both solutions are in good agreement. 
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I. INTRODUCTION 

This thesis has two primary goals. The first goal is to derive and document the 

solution to the three-dimensional inhomogeneous Heimholte equation for a free-space 

propagation problem when the square of the index of refraction is a linear function of 

depth. Given this type of ocean medium, the inhomogeneous Helmholte equation has an 

exact solution in terms of Airy functions. This exact "Airy function" solution will be 

incorporated into the computer program Linear Space-Variant Ocean (LSVOCN) as an 

additional ocean-medium transfer function. The second goal of this thesis is to further 

test the Recursive Ray Acoustics (RRA) Algorithm by comparing the magnitude and 

phase of the acoustic pressure calculated along a ray path by the RRA Algorithm with the 

magnitude and phase calculated by LSVOCN. 

The first step in this process requires a careful derivation of the solution to the 

three-dimensional inhomogeneous Helmholte equation for a free-space propagation 

problem when the square of the index of refraction is a linear function of depth. This 

derivation will be discussed in detail in Chapter II which is divided into three main 

sections. Section A defines the three-dimensional inhomogeneous Helmholte equation to 

be solved. (By using a zeroth-order Hankel transform, the solution process is simplified 

to solving a one-dimensional inhomogeneous ordinary differential equation vice a 

three-dimensional inhomogeneous Helmholte equation). Section B defines the 

mathematical formula used to model the square of the index of refraction as a linear 

function of depth. Section C documents the three steps that lead to the final solution of 

the inhomogeneous Helmholte equation. 

First, the description of the sound-speed profile is defined. This description 

allows us to solve for the two constants in the equation for the square of the index of 

refraction as a linear function of depth. Second, the homogeneous depth equation is 

manipulated into the form of Airy's differential equation and then solved in terms of Airy 

and Bairy functions. Third, the solution of the inhomogeneous depth equation is obtained 

by applying the appropriate boundary conditions at the source. 



The solution to the inhomogeneous Helmholtz equation is divided into two cases. 

In case one, the square of the index of refraction has a negative gradient. This case is 

further subdivided into a solution for the receiver depth equal to or above the source 

depth, and a solution for the receiver depth below the source depth. In case two, the 

square of the index of refraction has a positive gradient, and again a solution for the 

receiver depth equal to or above the source depth, and a solution for the receiver depth 

below the source depth are found. 

Chapter III is divided into three sections. Section A discusses the numerical 

techniques used in the process of converting the Airy function solution into working 

FORTRAN computer code used by LSVOCN, and defines the Green's function used to 

test LSVOCN. Before testing of the RRA Algorithm began, a comparison was made of 

the output of LSVOCN, using the above derived Airy function solution, with a test case, 

in an effort to validate the FORTRAN computer code. The simplest test case considered 

compared the magnitude and phase of the time-independent free-space Green's function 

for an isospeed medium with the output from LSVOCN. 

Section B of Chapter III discusses the three different Green's function test cases 

that were used to test LSVOCN. These are: (1) Green's function test case with the source 

sound-speed varied such that the modeled ocean medium approached an isospeed 

medium in order to compare the magnitude and phase of the Green's function with 

LSVOCN, (2) Green's function test case with the horizontal range varied while 

maintaining the receiver at the source depth, thus simulating an isospeed ocean medium 

for comparison of the Green's function magnitude and phase with LSVOCN, and (3) 

Green's function test case with the receiver depth varied above and below the source 

depth by one-half meter allowing for an approximate comparison of the Green's function 

magnitude and phase with LSVOCN. In each test case, the change in sound speed 

between the source and receiver was small enough to approximate an isospeed ocean 

medium. 

Section C of Chapter III focuses on the validation of the predicted values for the 

magnitude and phase of the acoustic pressure along a ray path given by the RRA 



Algorithm. This is done by propagating sound rays at various launch angles using 

negative and positive gradients for the index of refraction profile. The horizontal range 

and depth coordinates of selected points along these ray paths have been recorded and 

will become the receiver horizontal range and depth coordinates used later as inputs to 

LSVOCN. The magnitude and phase values calculated by LSVOCN are then compared 

to the corresponding magnitude and phase values obtained from the RRA Algorithm for 

validation purposes. 

Chapter IV summarizes the numerical problems encountered during the validation 

process, states conclusions as well as recommendations for future research. 





n. AIRY FUNCTION SOLUTION OF THE INHOMOGENEOUS 
HELMHOLTZ EQUATION 

A. THE INHOMOGENEOUS HELMHOLTZ WAVE EQUATION 

In this chapter we shall derive a solution for the following inhomogeneous 

Heimholte equation in cylindrical coordinates (r, $,y), shown in Fig. 1: 

J^PKrjo+7^/ (rJi+§;Mr>y)+k2(yMr>y)=fj^-*) (2.1) 

where the velocity potential <pf(r,y) is axisymmetric (i.e., independent of the azimuthal 

angle <j>), 

m= 2itf 
c(y) 

(2.2) 

is the depth-dependent wave number, c(y) is the depth-dependent speed of sound, and the 

impulse functions on the right-hand side of Eq.(2.1) represent a unit amplitude, 

omnidirectional point source at r - 0 and y =y0. 

z   .    * 
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Figure 1. Illustration of problem geometry. 



The solution yf(r,y) of Eq.(2.1) can be expressed as an inverse zeroth-order 

Hankel transform as follows, see [Ref. 2, Appendix 3C]: 

Vfay) = /tf {<t>j(kr,y)} = J~ Q/(kr,y)Jo(krr)kjkr (2.3) 

where 

Of{kr,y) = Ho{<f>j{r,y)} = J~ y{r,y)J0(krr)rdr (2.4) 

is the forward zeroth-order Hankel transform (also known as the Fourier-Bessel 

transform) of yf(r,y). Therefore, if we can find ®f(kr,y), then substituting Qf(k„y) into 

Eq.(2.3) will yield a solution of Eq.(2.1). 

Since 

Ho(£iq>j(r,y) + F^IVfr JO) = - *?*/(*, JO (2.5) 

and 

Ho{-7-) = 1* (2.6) 

taking the zeroth-order Hankel transform of Eq.(2.1) yields 

fa>Äkr,y»l*y(yYI>/(kr,y) = ^^ (2.7) 

where 

k2
y(y) = k2(y)-k}. (28) 

In Eq.(2.8), ky(y) is the depth-dependent propagation-vector component in the Y 

direction and kr\s the constant propagation-vector component in the horizontal range r 

direction (see Fig. 2). Therefore, now we only have to solve the ordinary differential 

equation given by Eq.(2.7) instead of the partial differential equation given by Eq.(2.1). 

Substituting the solution <bf{k„y) into Eq.(2.3) yields the solution yf(r.y) to Eq.(2.1). 



^   7. 

\Nsk 

^Ovw 
ky(y) 

X                               ♦                      ^ 
Y 

Figure 2. Illustration of the propagation-vector components kr and ky (y) 
and their relationship to the wave number k(y). 

B.   PROBLEM CONSTRAINTS 

The solution of Eq.(2.1) that shall be derived is only applicable to free-space 

propagation when the square of the index of refraction is a linear function of depth y. The 

index of refraction is defined as follows: 

n(y) = Co 

ciy) 
(2.9) 

where c0 = c(y0) is the speed of sound (m/s) at the source depth y0 and c(y) is the speed 

of sound (m/s) at depth y. If we let ^ = k(y0), then evaluating Eq.(2.2) at y = y0 yields 

*° ~ Co • (2.10) 

Therefore, we can write that 

k(y) - k0n(y) = 
2ttf 
ciy)' 

(2.11) 

As a result, Eq.(2.8) can be rewritten as 



k2y(y) = kW(y)-kl (2.i2) 

To ensure that the square of the index of refraction is a linear function of depth, we 

define the following equation: 

n iy)=aly + a0. (2.13) 

C.   PROBLEM SOLUTION 

Using the results from the last two sections, specifically Eq. (2.7) and (2.12), we 

are now ready to solve the inhomogeneous Heimholte equation. The solution can be 

broken into two parts. First, determine the solution of Eq.(2.7) at >> =y0, i.e., solve the 

homogeneous equation. Solving the homogeneous equation will result in four unknowns. 

In order to determine these four unknowns, which is the second part of the problem, we 

apply the boundary conditions above and below the source and the boundary conditions 

at the source, i.e., at>> = y0. As shown in [Ref. 2, Appendix 3C], the two boundary 

conditions that must be satisfied at the source are continuity of acoustic pressure and 

discontinuity in the y component of the acoustic fluid velocity vector. With this brief 

introduction in mind, let us now proceed with the solution of the inhomogeneous 

Heimholte equation. 

1. Description of the Sound-Speed Profile 

Consider a sound-speed profile where the square of the index of refraction is a 

linear function of depth, [see Eq.(2.13)]: 

n2{y)=ci]y + ao. (2.14) 

With the above equation in mind, we must now solve for the two unknown constants, 

a0 and av in order to solve Eq(2.7). Substituting Eq.(2.9) into Eq.(2.14) yields 



Rewriting Eq.(2.15) yields 

and if we let 

and 

c2(y)   cf   cV 

J _£o 

cV 
flo = T 

then 

„ip;=a'iy+ao- c2iy) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Solving for the speed of sound yields 

c(y) = Co 

Ja'y+a'o      Jay+ao 
(2.20) 

Equation (2.20) will allow the sound-speed profile to be calculated, once the unknown 

constants have been determined. 

Evaluating Eq.(2.19) at j> = 0 and at y=y0 , i.e., the source depth, yields 

c2(0) 
and 

-—=0^0+^0, 
c2(yo) 

respectively. Substituting Eq.(2.21) into Eq.(2.22) and solving for AT'I yields 

^ ~ Jo" 
1        1 

Uo    c2(0)J 

(2.21) 

(2.22) 

(2.23) 



Thus, using Eqs.(2.21), (2.23), (2.17), and (2.18), a0 and a, can be determined. 

For our problem, we will use a source depth of j>0 = 150 meters. In order to 

define a sound-speed profile, we specify the sound speed (m/s) zXy = 0 to be c(0) = 1500 

m/s. For a positive sound-speed gradient we specify the sound speed at the source depth 

to be c0 = 1515 m/s. Similarly, for a negative sound-speed gradient, we specify the 

sound speed at the source depth to be c0= 1485 m/s. These sound-speed profiles, along 

with the corresponding index of refraction plots, are shown in Fig. 3 and Fig. 4, 

respectively. 

INDEX Of REFRACTION SQUARED vs. DEPTH   SOUND SPEED PROFILE 
0, , , 0 

0.9E 1 1.02 1500       1S1C       1520        1530 
INDEX OF REFRACTION SQUARED c (nV3) 

Fig. 3 Positive sound-speed gradient. 

INDEX OF REFRACTION SQUARED v» DEPTH    SOUND SPEED PROFILE 
0« 1 0 

so 

100 

160 

200 

250 

300 
0 96 1 1 02 1470        1480       1433        1600 

INDEX OF REFRACTION SQUARED c (rrts) 

Fig. 4 Negative sound-speed gradient. 
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2. Solution to the Homogeneous Depth Equation 

Having carefully defined the sound-speed profile, we are now ready to solve the 

inhomogeneous depth dependent Heimholte equation as given by Eq. (2.7). As stated 

previously, the first part of the solution process is to solve the homogeneous equation 

where the square of the index of refraction is a linear function of depth. The 

homogeneous equation is 

4*#^) + *J(y)*/(*r^) = 0. (2.24) 
dy 

Substituting Eq. (2.13) into Eq. (2.12) yields 

*2öO = *o(«OH-«<>)-*?, (2.25) 
or 

k2
y(y) = klaiy + kla0-k2

r. (2.26) 

Substituting Eq. (2.26) into Eq. (2.24) and simplifying 

£f^Äkr,y) + fai4v + *o*o " k2
r)<t>/(kr,y) = 0. (2.27) 

If we let oco and ai be defined as 

a0=a0kl-k2 (2.28) 

ax=aikl, (2.29) 
and 

then 

dy 
■^>Akr,y) + (oay + o.o)^0r,y) = o. (2.30) 

Next, we must manipulate Eq. (2.30) into the form of Airy's differential equation. 

11 



The first step in this process is to define the new term 

C(y)=±(<xi) 3(ai_y + a0). (2.31) 

Applying the chain rule yields 

and since 

pAkr,y)-_^AKy)m 

*°°-W. dy 

(2.32) 

(2.33) 

upon substituting Eq.(2.33) into Eq. (2.32), we obtain 

^)Bi(a,)i^M- 
(2.34) 

Applying the chain rule again yields 

1^M = ^»/(M4 dy dydy dyV ±{ai)^^^ 
(2.35) 

=±^dt)iOAk^ (2.36) 

and upon substituting Eq. (2.34) into Eq. (2.36), we obtain 

^*Akr,y) = Ha^^*Akr,y). (2.37) 

Combing Eqs. (2.30), (2.31), and (2.37) yields 

+(ai)3-^-^/(*,,>>) + (±)(a,K00O/(*,,.y) = 0, (2.38) 

12 



or 
d2 

-<I>f(kr,y) ± fyWfikrj) = 0. (2.39) 

Upon choosing the minus sign, we have Airy's differential equation: 

~^^>AKy) - WM=o. (2.40) 

The general solution of Airy's differential equation is given by 

®f(kr,y)=AAi&(y)]+BBi[{>(y)] tfory<y0 (2.41) 

Q>j{kr,y) = CAi&(y)] + DBi&iy)] , for y >y0 (2.42) 

whereof and Bi are the Airy and Bairy functions, and A, B, C, and Dare unknown 

constants. Equation (2.41) and Eq.(2.42) form the solution to the depth dependent 

homogeneous Heimholte equation. We have an equation with four unknown constants as 

a result of solving a second-order differential equation. To find these four unknown 

constants, we must apply the boundary conditions above and below the source and the 

boundary conditions at the source, as will be done in the next section. 

3. Solution to the Inhomogeneous Depth Equation 

In this section we will determine the general solution to the inhomogeneous depth 

dependent Helmholte equation. As stated previously, in order to solve for the four 

unknown constants in Eq.(2.41) and Eq.(2.42), we must satisfy the boundary conditions 

above and below the source and the boundary conditions at the source. However, before 

we proceed with this solution, let us examine in detail the behavior of the functions 

^'[COO] and ^TCOO]t0 gain insight into the solution of the problem. 

By choosing the minus sign in Eq.(2.31), we can write that 

C(y) = -(ai) MCCU-KXO) (2.43) 

13 



Because 

Eq.(2.43) can be rewritten as 

Z(y) = -(OLifh$(y). 

Furthermore, by referring to Eq.(2.12), we can write that 

k2
y(y)=k0[n2(y)-sm2$0)] 

(2.44) 

(2.45) 

(2.46) 

since kr = k0sin(ß0), where ßc is the launch angle, measured with respect to the positive Y 

axis. Values of ß0 range from 0 to 180 degrees, [Ref. 2, Chapter 5]. Tables 18 through 

23, located in the Appendix, contain values for n2(y), ky
2(y), and CO) as a function of 

frequency, ß0, and depthy, for the analysis of the functions Ai[Z,(y)] and Bi[C,(y)]. The 

data in these tables is further displayed in graphical form in Figures 12 through 17, also 

located in the Appendix. 

To analyze the behavior of Aifc(y)] and Bi[t,(y)], let us draw our attention to Fig. 

5 and Fig. 6, as shown below: 

Figure 5. Case one: 
n2(y) with negative gradient. 

Figure 6. Case two: 
n2(y) with positive gradient. 

14 



The free-space solution can be broken into two cases. Case one: n2 (y) has a negative 

gradient, (see Fig. 5, Fig. 3, Fig. 15 through Fig. 17, and Tables 21 through 23). Case 

two: n2(y) has a positive gradient, (see Fig. 6, Fig. 4, Fig. 12 through Fig. 14, and Tables 

18 through 20). Also, as can be seen from Fig. 5 and Fig. 6 , each case must be analyzed 

in two regions, one above the source depth y0, and one below the source depth y0. 

First, let us analyze the behavior of the functions A i'[CO)l and £/[CO)l for, 

Region lib, Case one. Notice from Fig. 5, that the value of n2 (y) is less than one in this 

region. Thus, as can be seen from Eq.(2.46), ky2(y) will take on negative values. This will 

result in values of CO) taking on positive values [see Eq. (2.45)]. Therefore, in Region 

lib, Case one we should use the function A/[CO)l to ensure a bounded solution since 

AiV&)] > 0      as CO) > 4oo 
and 

MCO)] >4~    as CO) >+~. 

Following a similar argument for Region TTa, Case two we should only use the function 

Ai[£,(y)]. Thus, by discarding the Bairy function in Region lib, Case one and Region Ha, 

Case two we have ensured that our solution will remain bounded above and below the 

source as CO) approaches positive infinity. 

Second, for Region Ha, Case one and Region lib, Case two the value of n2{y) is 

greater than one. Thus k2{y) will take on positive values, which leads to negative values 

for CO)- Therefore, bothv4/[CO)] and 5/[C0)] should be used in Region Ila, Case one 

and Region lib, Case two since both the Airy and Bairy functions are well behaved for 

negative arguments. The asymptotic forms of the Airy and Bairy functions are defined as 

follows, [Ref. 4, Chapter 7] 

^i[C0)] = 4^[-C0)]^sin[|K0)]f + f]       -CO) ->-H-,       (2.47) 

and 

15 



Bi&(y)] = ^r[-CCv)« cos[fK(y)] f + J]        -£(y) -> +«.       (2.48) 

Thus, to determine the general solution of the inhomogeneous depth equation we 

must ensure the solution is bounded in Region lib, Case one and Region Ila, Case two, 

i.e., D = 0 (Case one), see Eq.(2.42) and B = 0 (Case two), see Eq.(2.41). Next, we must 

ensure the solution is in the form of a propagating wave in Region Ila, Case one and 

Region lib, Case two, i.e., A=Byanda = B/A (Case one), see Eq.(2.41), and C = By and 

b = D/C (Case two), see Eq.(2.42). In summary, we have the following forms for the 

free-space propagation solutions for each case based on Eq.(2.41) and Eq.(2.42): 

Case one:        %a(kr,y) = By [Ai[t,(y)} + aBiftiy)]] fay < y0 (2.49) 
%„(K d>) = Ay M'TCCy)]] for v > y0 (2.50) 

Casetwo: %a{kty)=Ay [Afc(y)]] fory<y0 (2.51) 
%b(K J) = By [Ai&(y)] + bBi&iy)]] fory > y0 (2.52) 

where Ay and By are arbitrary constants and a and b are known constants to be discussed 

later. Thus, for each case, we have two equations and two unknowns. 

To solve for the two unknown constants, we apply the boundary conditions of 

continuity of acoustic pressure and a discontinuity in the y component of the acoustic 

fluid velocity vector at the source depth ^0: 

1. continuity of acoustic pressure: 

Q>f2b(kr,yo)-®fla(kr,yo) = 0 (2.53) 

2. discontinuity in the y component of the acoustic fluid velocity vector: 

■^/ib(kr,yo)-^f2a(kr,y0)=d (2.54) 

16 



where d = ■£- is the finite discontinuity, [Ref. 2, Appendix 3C]. 
2K 

CASE ONE: 

Substituting Eq.(2.49) and Eq.(2.50) into Eq.(2.53) yields 

AyAißiyo)] -By[AiVi(yo)]+aBi&(yo)]]=0, (2.55) 

and upon solving for Ay we obtain 

i4»K(yo)l 

Substituting Eq.(2.49) and Eq.(2.50) into Eq(2.54) yields 

-(aot^i'Kö'o)] " H(ai)^>^f/K(yo)] + aÄ/'tCCyo)]] =</, (2.57) 

and upon substituting Eq.(2.56) into Eq.(2.57) and rearranging terms, we obtain 

OBy        ..„»„,_.   v, ,_.,,.,,_.   vi i^..«lM/^..ffl_ </ . Tr,   .1-[5/[C(yo)M//[C(yo)] - >«K(yo)lÄ'Kü'o)]] = —a
T- (2-58) 

Since, see [Ref. 1, Chapter 4] 

Bi^iy0)]Ai%(yo)] -Ai[C,(yo)]Bi%(y0)] = - £ (2.59) 

which is known as the Wronskian of the Airy and Bairy functions, substituting Eq.(2.59) 

into Eq.(2.58) and solving for By yields 

By^-^Ai&iyo)]. (2.60) 
a(ai)3 

17 



Substituting Eq.(2.60) into Eq.(2.56): 

^ = -J^T[^'K(yo)] + oB/fCO'o)]]. (2.61) 
a(ai)3 

CASE TWO: 

Substituting Eq.(2.51) and Eq.(2.52) into Eq.(2.53) yields 

BylAtVJyo)] + bBi[{,(yo)]] -AyAi&tyo)] = 0, (2.62) 

and upon solving for A , we obtain 

Ay~By      wj^s\ • <2-63> 

Substituting Eq.(2.51) and Eq.(2.52) into Eq.(2.54) yields 

-ia^ByiAfciyo)) + bB'&iyo)]} - (-)(«,)iv'[£(Vo)] =d, (2.64) 

and upon substituting Eq.(2.63) into Eq.(2.64) and rearranging terms, we obtain 

JH^iAi^o))Bi%(yo)] - Bi[too)W K(yo)]] = —^j- (2-65) 
(ai)3 

Since 

Ai[&o)]B%(yo)] -Bi[C,(y0)]Ai%(yo)] = £, (2.66) 

substituting Eq.(2.66) into Eq.(2.65) and solving for ^ yields 

ßr = p4'[COo)] • (2.67) 
2>(oc,)3 
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Substituting Eq.(2.67) into Eq.(2.63) yields 

Ay = ^r^/tCOo)] + bBttiyo)]] ■ (2.68) 
*(a,)3 

Values for the constants a and b must be determined before we have a complete 

solution. To determine the value of a, recall Eq.(2.49) and Eq.(2.60). Substituting 

Eq.(2.60) into Eq.(2.49) and rearranging terms yields 

®Mkr,y) = ^/[^o)]r^,[C(y)] + B/KMll y ^y0 • (2.69) 
(a,)3 

Note that ( see Tables 21 through 23, located in the Appendix) as y -> - <», Zfy) -»-«>. 

Recall the asymptotic expansions of Ai[C,(y)] and 2?/[C(y)]: 

AtUm = -tK(y)] ~< sin[fK(y)] I + }], -£(y) -> 4- (2.70) 
J7t 

and 

Ä[C(y)] = ^K(y)]"4lcos[|K0)]2+f], -C(y)--> -H~. (2.7i) 

Therefore, substituting Eq.(2.70) and Eq.(2.71) into Eq.(2.69) yields 

*M*r,y) = ^'^ W)]^sin(f K(y)]l + S) + cos(|K(y)]t + J)l (2.72) 

Since this derivation corresponds to a time-harmonic solution with time dependence 

given by exp{+j2icft), in order to get <S>fia(kr y) into the form of a wave traveling in the 

positive -£(y) direction, we must choose a = +j since 

exp(-yKO)]) = cos(K(y)])-jsin(KO)]). (2.73) 
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To determine the value of b, we follow a similar logic. Substituting Eq.(2.67) into 

Eq.(2.52) and rearranging terms yields 

<S>ßb{kr,y) = -""^[^/[COO] + AK(y)]],    >> > y0. (2.74) 
(a,)3 

Note that (see Tables 18 through 20, located in the Appendix) as y -> + <*> y £(y) _> _ oo. 

Using the same logic as before, since -£(y) -> -H», we must pick 6 = +j to ensure the 

correct form of Eq.(2.74). 

In summary, we have the following formulas: 

CASE ONE: 

«M*rjO = ™r2R{Ai[l(y) ] +Ä(v)]} ,y Syo (2.75) 
(+y')(ai)3 

and 

<P/2&(*r,.y) j i4i[^(y)], >> >y0 (2.76) 
(+y)(a,)3 

CASE TWO: 

'P/a«(*r,^) y At[t,iy)] ,y<y0 (2.77) 
(+y'Ka,)3 

and 

<V(*r,>0 = ^^H'TCOO] +yÄ[C(y)]} ,y >yo (2.78) 
(+/)(«,) 3 
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Recall that d=-j-. 

Now that a solution for <S>f(kr y) has been derived, all that is left to determine the 

velocity potential is to insert 0>f(kr y) into Eq.(2.3) and integrate. It is interesting to 

note, as described in, [Ref. 2, Chapter 9], that: 

<bj{krty) =Hm{f,fr,y ;y0) (2.79) 

where HJff^y; y0) is the time-invariant, space-variant ocean medium transfer function. 

Thus, as described in the Introduction of this thesis, Eq.(2.75) through Eq.(2.78) will be 

added to the already existing library of ocean medium transfer functions in the program 

LS VOCN. With this derivation and new transfer function, we can compare the results 

from LSVOCN to the RRA algorithm to determine the accuracy of the RRA algorithm. 
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m. COMPARISON OF THE "AIRY FUNCTION" SOLUTION 
(MAGNITUDE AND PHASE) 

WITH THE RRA ALGORITHM'S SOLUTION 

A. THE TIME-HARMONIC FREE-SPACE GREEN'S FUNCTION AND 

NUMERICAL ANALYSIS TECHNIQUES 

1. The Time-harmonic Free-Space Green's Function for a Homogeneous 

Ocean Medium 

Once the solution to the inhomogeneous Heimholte equation for a free-space 

propagation problem with the square of the index of refraction a linear function of depth 

had been derived, the solution was converted to FORTRAN computer code and added 

to the computer program LSVOCN as a new ocean medium transfer function. LSVOCN 

will accept as primary inputs: 

1. Sound-speed at the ocean surface and source, in meters/second. 

2. Receiver depth and horizontal range relative to the source, in meters. 

3. Frequency the source will operate, in Hertz. 

The output of LSVOCN is either the velocity potential (magnitude and phase) or 

the acoustic pressure (magnitude and phase) at a specified receiver location. To test the 

RRA Algorithm, the depth and horizontal range coordinates of selected points along a 

ray path, propagated by the RRA Algorithm, will be input into LSVOCN as receiver 

coordinates. The calculated acoustic pressures (magnitude and phase) from LSVOCN 

corresponding to these selected points, will be compared with the calculated acoustic 

pressures (magnitude and phase) from the RRA Algorithm. 

Before beginning the testing process, we needed to ensure that both the 

theoretical solution and FORTRAN computer code were correct. In order to perform this 

validation, test cases were developed for which theoretical values of the velocity 

potential could be calculated and compared with the predicted values found using 

LSVOCN. The time-harmonic free-space Green's function which corresponds to a 

spherical sound source operating in the monopole mode of vibration in a homogeneous 

ocean medium, was selected as the basis for these test cases. 
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As shown in [Ref. 2, Chapter 4], the velocity potential of the acoustic field 

produced by a spherical sound source in the monopole mode of vibration operating in an 

unbounded, homogeneous medium is given by 

<Pf(R,Q,V) = Sogf(r\0) e^J^} ,R>a, (3.1) 

where S0 is the source strength (volume flow rate) in mVs, 

gÄ--) = 4rt <3-2) 

is the time-harmonic free-space Green's function (exp(Jcot) factor suppressed) and R is 

the spherical range between source and receiver. In the limit as a -* 0 (modeling a point 
source) Eq.(3.1) becomes 

<P/<*,e,y) = Sogf(r\0) = SoeXP^R) ,R>0. (3.3) 

Using Eq.(3.3), theoretical values for the magnitude and phase of an acoustic 

field at a receiver in an unbounded, homogeneous ocean medium located R meters from a 

point source can easily be calculated. Although these values are valid only for the 

homogeneous case, as the modeled ocean medium that LSVOCN uses becomes more 

homogeneous, then the calculated velocity potential (magnitude and phase) from 

LSVOCN should approach the predicted values calculated by Eq.(3.3). The theoretical 

magnitude of the velocity potential calculated by Eq.(3.3) is given by 

W-&- 0.4) 

The theoretical phase of the velocity potential calculated by Eq.(3.3) is given by 
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ZW=n{±\ - 3£) (3.5) 

where/is the frequency at which the source operates, R is the spherical range between 

the source and receiver, and c is the speed of sound. In order to test the Airy function 

solution and the corresponding FORTRAN computer code in LSVOCN, Eq.(3.4) and 

Eq.(3.5) were used in three different Green's function test cases, defined as follows: 

1. With the receiver and source depth equal, and with the receiver one meter from 
the source, vary the speed of sound at the source so that it approaches the speed 
of sound at the surface. 

2. With the receiver and source depth equal, and the source sound-speed constant, 
vary the horizontal range between the source and receiver. 

3. With the source sound-speed constant, vary the receiver depth. 

Each of these test cases will be covered in detail in Section B of this chapter. 
2. Numerical Analysis Techniques 

Recall from Eq.(2.3) that 

9/(r,j) =#-'{O/tfrjO} = io ®f{kr,y)Jo(krr)krdkr. (3.6) 

In order to calculate the exact "Airy function" solution at a given receiver depth and 

horizontal range, the integral in Eq.(3.6) must be computed. As we discovered, this 

integral is difficult to evaluate numerically. The integrand in Eq.(3.6) is oscillatory due 

to the Bessel function, when negative arguments of the Airy and Bairy functions are 

involved. Numerous overflow and underflow errors were generated when Eq.(3.6) was 

calculated numerically with the computer. To eliminate overflow errors, the 

exponentially scaled versions of the Airy and Bairy functions were used. The following 

example illustrates the method of using the exponentially scaled Airy and Bairy functions 

to eliminate overflow errors. 

In order to solve Eq.(2.75) or Eq.(2.78) for the case of propagating waves, it is 

necessary to multiply the Airy and Bairy functions together. Although the argument of 

these functions, £(y), is more likely to take on negative values in regions 11a, Case one 
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and region lib, Case two, once the propagating waves turn evanescent, the value for £(y) 

is forced to take on positive values which cause the Bairy function to blow up, leading to 

overflow errors. By experimentation it was discovered that the computer could handle 

values of £(y) up to positive forty, without generating overflow errors. However, to 

include most of the evanescent waves, £(y) must be allowed to take on much larger 

positive values, which requires the use of the exponentially scaled Airy and Bairy 

functions: 

1 .DAI(x), DBI(x) - double-precision IMSL Airy and Bairy functions. 

2.DAIE(x), DBIE(x) - double-precision IMSL exponentially scaled and Bairy 
functions. 

where 

rlJ DAIE(x) =DAI(x) xexp(fx2) (3 7) 

and 

2 *, DBIE{x) = DBl(x) x exp(- fx*). (3.8) 

Therefore when multiplying Ai[C,(y)] and Bi[C,(y)], first form the difference term: 

D/FF=f[c(y0)'-C(y)f]. (3.9) 

Then perform the required multiplication as follows: 

A.&iyo)] xBi&iy)] = expi-DJFF) xDAIE[^(y0)] xDBIE[£(y)]. (3.10) 

This method of multiplying the Airy and Bairy functions together allows for much larger 

values of £(y) to be used. Thus most of the evanescent waves could be included. 

Underflow errors did not offer the same problems that overflow errors caused since the 

machine handled underflow errors without termination of the computer program 

LSVOCN. However, small inaccuracies from underflow errors had to be expected. 
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These same techniques can be used to solve Eq.(2.76) and Eq.(2.77). Overflow 

errors were not a problem for these two equations since the Bairy function was not part 

of the solution. Graphical presentations of the Airy and Bairy functions are included in 

Figures 7 and 8. Tabulated values of the Airy and Bairy functions, the exponentially 

scaled Airy and Bairy functions, and EDAIE(x) and EDBIE(x) are included in Table 1. 

The functions EDAIE(x) and EDBIE(x) are the exponentially scaled Airy and Bairy 

functions multiplied by the appropriate exponential factor that eliminates the exponential 

scaling. These values were also tabulated to ensure that the numerical method 

represented by Eq.(3.9) and Eq.(3.10) would produce the same values as if the 

exponentially scaled functions were not used. This can be observed in Table 1 by 

noticing that DAI(X) = EDAIE(X) and that DBI(X) = EDBIE(X). 

To solve for the velocity potential, Eq.(3.6) must theoretically be integrated from 

zero to infinity. In practice, the upper limit of integration need not be infinity, but rather 

a sufficiently large number so that the integrand becomes negligible in value, in other 

words, all significant evanesent waves are included. A method was developed to 

automatically generate the upper limit of integration. This method will be discussed next. 

We begin with Eq.(2.45), rewritten here for convenience: 

2 

C(v) = -(«i) 3^(y). (3.11) 

Equation (3.11) can rewritten as 

C(y) = =L=[*2(y) - k2
r], . (3.12) 

and upon rearranging terms and solving for k„ we obtain 

kr=+jk2(y) + [^(fl,^)2]C(y) . (3.13) 
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[Ä DAIE(X) 
O.OE+00 0.355028E+OO 

0.1E+02 0.158I24E+00 

0.1E+03 0.891969E-01 

0.1E+04 0.501642E-01 

0.1E+05 0.282095E-O1 

0.1E+O6 0.158634E-O1 

0.1E+07 0.892062E-02 

0.1E+O8 0.501643E-02 

0.1E+09 0.282095E-02 

O.lE+10 0.158634E-O2 

O.lE+11 0.892062E-O3 

0.1E+12 0.501643E-O3 

0.1E+13 0.282095E-03 

0.1E+14 0.158634E-03 

0.1E+15 0.892062E-04 

0.1E+16 0.501643E^M 

0.1E+17 0.282095E-04 

0.1E+18 0.158633E-04 

0.1E+19 0.892062E-05 

0.1E+20 0.501643E-05 

0.1E+21 0.282095E-O5 

0.1E+22 0.158634E-05 

0.1E+23 0.892062E-O6 

0.1E^4 0.501643E-06 

0.1E+25 O.282095E-O6 

0.1E+26 0.158634E-O6 

0.1E+27 0.892062E-07 

0.1E+28 0.501643E-07 

0.1E+29 0.282095E-O7 

0.1E+30 0.158634E-07 

0.1E+31 0.892062E-08 

0.1E+32 0.501643E-08 

0.1E*33 0.282095E-08 

0.1E+34 0.158634E-08 

0.1E+35 0.892062E-09 

0.1E+36 0.501643E-O9 

0.1E+37 0.282095E-09 

O.IE+38 0.158634E-09 

0.1E+39 0.892062E-10 

0.1E+40 0.501643E-10 

0.1E+41 0.282095E-10 

0.1E+42 0.158634E-10 

Airy and Exponentially Scaled Airy Functions 
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;V->DAIE(xj   j            i            j            ■ 
v -> EpAiE(x) j         j         ■         ■ 

* 

 i 

*        :         : 

- I        I       !       '• L_ 
10 

Figure 7. Tabulated values of DAIE(x) and plots of DAI(x), DAI(-x), DAIE(x), and EDAJE(x). 
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I X       DBIE(X)   | 
O.OE+OO   0.614927E+00 

0.1E+02   0.318340E+O0 

0.1E+03   0.178431E+00 

0.1E+04   0.100329E+00 

O.lE+05    0.564190E-01 

0.1E+06   0.317267E-01 

0.1E-K)7   0.178412E-01 

0.1E+08   0.100329E-01 

0.1E+09   0.564189E-02 

0.1E+10   0.317267E-02 

0.1E+11   0.178412E-O2 

0.1E+12   0.100329E-02 

0.1E+13   0.564189E-O3 

0.1E+14   0.317267E-03 

0.1E+15   0.178412E-03 

0.1E+16   0.100329E-03 

0.1E+17   0.564190E-04 

0.1E+18   0.317267E-O4 

0.1E+19   0.178412E-O4 

0.1E+20   0.100329E-04 

0.1E+21   0.564190E-05 

0.1E+22   0.317267E-05 

0.1E+23   0.178412E-O5 

0.1E+24   0.100329E-05 

0.1E+25   0.564190E-06 

0.1E+26   0.317267E-06 

0.1E+27   0.178412E-O6 

0.1E+28   0.100329E-06 

0.1E+29   0.564190E-07 

0.1E+30   0.317267E-07 

0.1E+31   0.178412E-07 

0.1E+32   0.100329E-O7 

0.1E+33   0.564189E-08 

0.1E+34   0.317267E-O8 

0.1E+35   0.178412E-08 

0.1E+36   0.100329E-08 

0.1E+37   0.564189E-09 

0.1E+38   0.317267E-O9 

0.1E+39   0.I78412E-09 

0.1E+40   O.100329E.O9 

0.1E+41    0.564190E-10 

0.1E+42   0.317267E-10 

Bairy and Exponentially Scaled Bairy Functions 
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Bairy Function with -x and +x Argument Values 

Figure 8. Tabulated values of DBIE(x) and plots of DBI(x), DBI(-x), DBIE(x), and EDBIE(x). 
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X         DAI(X) DAIEfX)         EDAIECX) X            DBI(X)         DBIE(X)          EDBIE(X) 
0.00   0.355028E+OO 0.355028E+O0   0.355028E+O0 0.00   0.614927E+O0   0.6I4927E+O0   0.614927E+OO 
0.10   0.329203E+O0 0.336217E+00   0.329203E+O0 0.10   0.659862E+O0   0.646096E+00   0.659862E+O0 
0.20   0.303703E+OO 0.322363E+O0   0.303703E-KX) 020   0.705464E+00   0.664628E+O0   0.705464E+O0 
0.30   0278806E-HX) 0.311084E+O0   0278806E+O0 0.30   0.752486E+O0   0.674409E+O0   0.752486E+O0 
0.40   0254742E+O0 0.301541E-KX)   0254742E+00 0.40   0.801773E+O0   0.677338E+O0   O.80I773E+O0 
0.50   0.231694E+O0 0293277E+O0   0231694E+O0 0.50   0.854277E+O0   0.674892E+00   0.854277E+O0 
0.60   0209800E-KK) 0286000E+00   0209800E+OO 0.60   0.911063E+O0   0.668324E+O0   0.911063E+O0 
0.70   0.189162E+O0 0279513E+O0   0.189I62E+O0 0.70   0.973329E+O0   0.658708E+O0   0.973329E+OO 
0.80   0.169846E-KX) 0273670E-KX)   0.169846E+O0 0.80   0.104242E+OI    0.646954E+O0   0.104242E+O1 
0.90   0.151887E+O0 0268364E+00   0.151887E+O0 0.90   0.111987E+01    0.633817E+O0   0.111987E+O1 
1.00   0.135292E+O0 0263514E-KK)   0.135292E+O0 1.00   O.120742E+O1    0.619912E+O0   0.120742E+O1 
1.10   0.120049E+O0 0259052E+00   0.120O49E+O0 1.10   0.130707E+O1    0.605721E+O0   0.130707E+O1 
120   0.106126E+O0 0254928E-KX)   0.106126E+O0 120   0.142113E+O1    0.591614E+O0   0.142113E+O1 
1.30   0.934746E-01 0251098E+O0   0.934746E-01 1.30   0.155228E+O1    0.577859E+O0   0.155228E+O1 
1.40   O.82O380E-O1 0247527E+O0   0.820380E-OI 1.40   0.170366E+O1    0.564646E+O0   0.170366E+O1 
1.50   0.717494E-01 0244185E-K»   0.717495E-01 1.50   0.187894E+O1    0-552094E+O0   0.187894E+O1 
1.60   0.625369E-01 0241048E+O0   0.625369E-01 1.60   0208247E4O1    0.540272E+O0   0208247E+O1 
1.70   0.543248E-01 0238094E+O0   0.543248E-01 1.70   0231941E+O1    0.529208E+O0   0231941E-KJ1 
1.80   0.470362E-01 0235306E+O0   0.470362E-01 1.80   O259587E+01    O.518898E+0O   0259587E+O1 
1.90   0.405944E-01 0232667E+O0   0.405944E-01 1.90   0291918E+O1    0.509320E+O0   0291918E+01 
2.00   0.349241E-01 0230165E+O0   0.349241E-01 2.00   0.329809E+O1    0.500437E+O0   0.3298O9E+O1 
2.10   0.299526E-01 0.227786E+O0   0299526E-01 2.10   0.374315E+01    0.492203E+OO   0.374315E+OI 
220   0256104E-01 0225522E+O0   0256104E-0I 220   0.426704E+O1    0.484567E4O0   0.426704E+O1 
2.30   0218320E-01 022336IE+O0   0218320E-01 2.30   0.488506E-KH    0.477480E+O0   0.488506E+01 
2.40   0.185561E-01 0221297E-KX)   0.185561E-01 2.40   0.561577E+O1    0.470890E+O0   0.561577E+O1 
2.50   0.157259E-01 0219322E+O0   0.157259E-01 2.50   0.648166E+O1    0.464750E+O0   0.648166E+O1 
2.60   0.132893E-01 0217429E+O0   0.132893E-01 2.60   0.751009E-KH    0.459017E+00   0.751009E+O1 
2.70   0.111985E-01 0.215613E+OO   0.111985E-01 2.70   0.873439E+OI    0.453648E+O0   0.873439E+O1 
2.80   0.941050E-02 0.213868E+O0   O.941O51E-02 2.80   0.101953E+O2    0.448608E+O0   0.101953E+O2 
2.90   0.788631E-02 0212189E+O0   0.788631E-02 2.90   0.119426E+O2    0.443863E+O0   0.119426E+O2 
3.00   0.659114E-02 0210572E+O0   0.659114E-02 3.00   0.140373E+O2   0.439384E+O0   0.140373E+O2 
3.10   0.549399E-02 0209013E+O0   0.549399E-02 3.10   0.165547E+O2   0.435146E+00   0.165547E+O2 
3.20   0.456744E-02 0207509E+O0   0.456744E-02 320   0.195870E+02    0.431125E+O0   0.195870E+O2 
3.30   0.378729E-O2 02O6056E+O0   0.378729E-02 3.30   0232483E+O2    0.427301E+O0   0232483E+O2 
3.40   0.313234E-02 0204651E+00   0.313234E-02 3.40   0276796E+O2    0.423657E+O0   0276796E+02 
3.50   0258410E-02 0203292E+O0   0258410E-02 3.50   0.330555E+02    0.420177E+O0   0.330555E+O2 
3.60   0212648E-02 0201976E+O0   0212648E-02 3.60   0.395927E+02   0.416848E+O0   0.395927E+O2 
3.70   0.174557E-02 0200700E+00   0.I74557E-02 3.70   0.475607E+O2    O.413656E+00   0.475607E+02 
3.80   0.142939E-02 0.199462E+O0   0.142939E-02 3.80   0.572954E+02    0.410592E+O0   0.572954E+O2 
3.90   0.116765E-02 0.198261E-KK)   0.116765E-02 3.90   0.692160E+O2    0.407646E+O0   0.692160E+02 
4.00   0.951564E-03 0.197095E+O0   0.951564E-03 4.00   0.838471E+O2    0.404809E+O0   0.838471E+O2 
4.10   0.773630E-O3 0.195961E-KX)   0.773629E-03 4.10   0.101846E+03    0.402075E-KK)   0.101846E+O3 
420   0.627496E-03 0.194859E+O0   0.627496E-03 420   0.124038E+O3    0.399435E+O0   0.124038E+O3 
4.30   O.507787E-03 0.193786E+O0   0.507787E-03 4.30   0.151462E+O3    0.396884E+O0   0.151462E+03 
4.40   0.409974E-03 0.192741E+O0   0.409974E-03 4.40   0.185428E+O3    0.394417E+O0   0.185428E+O3 
4.50   0.330250E-03 0.191724E+O0   0.330250E-O3 4.50   0227588E+O3    O.392027E+00   0227588E+O3 
4.60   0265432E-03 0.190732E+O0   0265432E-03 4.60   028O036E+O3    0.389712Ei«>0   0280036E+O3 
4.70   0212861E-03 0.189765E+OO   0212861E-03 4.70   0.345426E+O3    0.387466E+O0   0.345426E+O3 
4.80   0.170326E-03 0.188822E+O0   O.170325E-03 4.80   0.427126E+O3    0.385286E+00   0.427126E+O3 
4.90   0.135992E-03 0.187901E+O0   0.135992E-03 4.90   0.529425E+O3    0.383168E+O0   0.529425E+O3 
5.00    0.108344E-03 0.1870O2E+O0   0.108344E-03 5.00   0.657792E+03    0J8HO9E+OO   0.657792E+O3 
5.10   0.861324E-04 0.186124E+O0   0.861324E-O4 5.10   0.819209E+O3    0.379105E+O0   0.819210E+O3 
520   0.683285E-04 0.185265E-KK)   0.683285E-04 520   0.102261E-KM    0J77155E+O0   0.102262E+O4 
5.30   0.540905E-04 0.184426E4O0   0.540905E-04 5.30   0.127947E+O4    0.375256E-KK)   0.127947E+O4 
5.40   0.427299E-04 0.1836O5E+O0   0.427298E-04 5.40   0.160448E+04    0.373405E-KX)   0.160448E+<M 
5.50   0.336853E-04 0.182802E-KK)   0.336853E-O4 5.50   0201658E+04    0.37l600E*O0   0201658E+O4 
5.60   0265006H-04 0.182015E+O0   0265006E-04 5.60   0254018E+O4    0.369839E+O0   0254018E+O4 
5.70   02O8058E-O4 0.181246E-K»   0208058E-04 5.70   0.320680E+O4    0.368120E+O0   0.320680E+O4 
5.80   0.163017E-04 0.180491E+O0   0.163017E-04 5.80   0.405720E+04    0.366441E+O0   0.405720E+O4 
5.90   0.127471E-04 0.179753E+00   0.127471E-04 5.90   0.5l442lE'04    0.364800E<00   0.5l4422E»04 
6.00   0.994769E-05 0.179028E+O0   0.994769E-O5 6.00   0.653645E+O4    0.363197E+00   0.653645E+O4 
6.10   0.774773E-05 0.178318E+O0   0.774773E-05 6.10   0.832309E-KM    0.361629EKK)   0.832309EHM 
620   0.602246E-05 0.177622E-KX)   0.602246E-05 620   0l06204E»05    0.36O095E+O0   0.106204E+05 
6.30   0.467226E-05 0.176939E+O0   0.467226E-05 630   0.135799E+O5    0J58593E+O0   0.I35800E+O5 

Table l. Tabulated values for DAI(x), DAIE(x), EDAIE(x), DBl(x), DBIE(x), and EDBIE(x). 
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Before the exponentially scaled Airy and Bairy functions were used, the largest 

positive value of the argument for the Bairy function that could be evaluated by the 

computer without causing overflow errors was tfy) = t^ = 40. By using the 

exponentially scaled Airy and Bairy functions, it was discovered that ^ could take on 

extremely large values, for example, ^ = 1012 - 1016. Substituting ^ into Eq.(3.13) 

for £(y) resulted in the following equation for the upper limit of integration. 

krm*x = +Jk2(y) + [iiaxkl)2 ]^T (3.14) 

Therefore, the upper limit of integration used in Eq.(3.6) could automatically be adjusted 

to the maximum possible value regardless of the frequency selected. However, due to the 

oscillatory nature of the Bessel function and the dependence of its argument on kr and r, 

the integrand of Eq.(3.6) becomes increasingly difficult to integrate numerically as kr 

increases (for a fixed r), because as the wave number of the Bessel function increases, the 

function becomes more highly oscillatory. To ensure accurate results from the computer 

code, the region of integration had to be divided into subintervals in performing the 

numerical integration. This method enabled LSVOCN to calculate increasingly many 

evanescent waves providing more accurate results. 

B. COMPARISON OF LSVOCN WITH THE TIME-HARMONIC 

FREE-SPACE GREEN'S FUNCTION FOR A HOMOGENOUS OCEAN 

MEDIUM 

1. Green's Function Test Case One - Vary the Source Sound-Speed 

The first test case involved varying the source, operating at frequencies of 

1000 Hz, 250 Hz, and 50 Hz, sound-speed while maintaining the surface sound-speed 

fixed, using both positive and negative gradients for the square of the index of refraction. 

Each case had an initial source sound-speed of 1515 m/s for the negative gradient of the 

square of the index of refraction, and 1485 m/s for the positive gradient case. The source 

and receiver depths were held constant at 150 meters, with the receiver located one meter 
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in horizontal range from the source. For each successive run of the test case, the source 

sound-speed was decreased/increased by a factor of 3 m/s until 1501 m/s and 1499 m/s 

was reached, respectively, while maintaining the surface sound-speed constant at 1500 

m/s. Thus, the source sound-speed was never allowed to take on a value of 1500 m/s, 

ensuring that the Airy function solution of LSVOCN, which assumed a sound-speed 

profile where the square of the index of refraction was a linear function of depth, would 

remain valid while at the same time forcing the modeled ocean medium to become more 

homogeneous. If the derived Airy function solution and the corresponding computer code 

in LSVOCN were correct, then as the source sound-speed approached the surface 

sound-speed, the velocity potential (magnitude and phase) values calculated by LSVOCN 

would converge approximately to the velocity potential (magnitude and phase) values 

predicted by Eq.(3.4) and (3.5), respectively. Because we were making calculations at the 

source depth, the DIFF term given by Eq.(3.9) was equal to zero, which made the 

exp(-DIFF) term in Eq.(3.10) equal to one. This condition caused the oscillations of the 

integrand in Eq.(3.6) to decay very slowly, thus requiring longer integration causing an 

increase in CPU time. A summary of these test cases is included as Tables 2 through 7. 

The Delta's and percentage differences included in Tables 2 through 7 were 

calculated as follows: 

1. Delta magnitude = LSVOCN magnitude - Green's function magnitude 
2. Delta phase = LSVOCN phase - Green's function phase 

3. % Difference magnitude = LSVOC^mag-"reCT1'sfim<aio"mae x 100% 0 Green s function mag *wv 

4   0/  r\:«U_ _u LSVOCN phase-Green's function phase       ,„,.,,, . % Difference phase = _:    . ,—:—- -— x 100% r Green s function phase JW^U 

The data in Tables 2 through 7, show that as the source sound-speed approaches 

the surface sound-speed, making the modeled ocean medium more homogeneous, the 

calculated velocity potential (magnitude and phase) values from LSVOCN approach the 

velocity potential (magnitude and phase) values predicted by the Green's function - our 

first validation. 
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SOURCE FREQUENCY = 1000Hz 
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS 

SURFACE SOUND-SPEED = 1500 m/s 
Sound Speed 

Source 
m/s 

Magnitude 
Green's Func 

Phase 
Green's Func 

Deg. 

Magnitude 
LSVOCN 

nrVs 

Phase 
LSVOCN 

Deg. 

Delta 
Magnitude 

mVs 

Delta 
Phase 
Deg. 

% Difference 
Magnitude 

% Difference 
Phase 

1515 0.0795775 302.37624 0.0787327 302.557 -0.0008448 0.18076 -1.0616066 0.0597798 
1512 0.0795775 301.90476 0.0787842 302.059 -0.0007933 0.15424 -0.9968898 0.051089 

1509 0.0795775 301.43141 0.0788504 301.559 -0.0007271 0.12759 -0.9137005 0.042328 
1506 0.0795775 300.95618 0.0789223 301.039 -0.0006552 0.08282 -0.8233483 0.027519 

1503 0.0795775 300.47904 0.0790248 300.502 -0.0005527 0.02296 -0.6945431 0.0076411 
1501 0.0795775 300.15989 0.0791721 300.148 -0.0004054 -0.01189 -0.5094405 -0.0039612 

Table 2. Comparison of Green's Function with LSVOCN for Test Case 1 
(Vary the Source Sound-Speed) - n2(y) with Negative Gradient. 

SOURCE FREQUENCY = 250Hz 
SOURCE DEPTH = RECETVER DEPTH = 150 METERS 

SURFACE SOUND-SPEED = 1500 m/s 
Sound Speed 

Source 
m/s 

Magnitude 
Green's Func 

nrVs 

Phase 
Green's Func 

Deg. 

Magnitude 
LSVOCN 

mVs 

Phase 
LSVOCN 

Deg. 

Delta 
Magnitude 

mVs 

Delta 
Phase 
Deg. 

% Difference 
Magnitude 

% Difference 
Phase 

1515 0.0795775 120.59406 0.0791376 120.992 -0.0004399 0.39794 -0.5527944 0.3299831 
1512 0.0795775 120.47619 0.0791609 120.83 -0.0004166 0.35381 -0.5235148 0.2936763 
1509 0.0795775 120.35785 0.0792156 120.704 -O.O0O3619 0.34615 -0.4547768 0.2876007 
1506 0.0795775 120.23904 0.07923 120.502 -0.0003475 0.26296 -0.4366812 0.2186977 
1503 0.0795775 120.11976 0.0793777 120.422 -0.0001998 0.30224 -0.251076 0.2516156 
1501 ■,f.mw ■u.i.vn-vj ;ifoi>Mm mvumm m.tmvm »mi.« m.muM-M ■,II-U:-M« I 

Table 3. Comparison of Green's Function with LSVOCN for Test Case 1 
(Vary the Source Sound-Speed) - n2(y) with Negative Gradient. 

SOURCE FREQUENCY = 50Hz 
SOURCE DEPTH = RECETVER DEPTH = 150 METERS 

SURFACE SOUND-SPEED = 1500 m/s 
Sound Speed 

Source 
m/s 

Magnitude 
Green's Func 

m'ls 

Phase 
Green's Func 

Deg. 

Magnitude 
LSVOCN 

nrVs 

Phase 
LSVOCN 

Deg. 

Delta 
Magnitude 

m'/s 

Delta 
Phase 
Deg. 

•/.Difference 
Magnitude 

% Difference 
Phase 

1515 0.0795775 168.11881 0.079782 168.366 0.0002045 0.24719 0.2569822 0.1470329 

1512 0.0795775 168.09524 0.0797383 168.322 0.0001608 0.22676 0.2020672 0.1348997 

1509 0.0795775 168.07157 0.0797825 168.286 0.000205 0.21443 0.2576105 0.1275826 

1506 0.0795775 168.04781 0.079723 168.231 0.0001455 0.18319 0.1828406 0.1090106 

1503 0.0795775 168.02395 0.0797083 168.172 0.0001308 0.14805 0.1643681 0.0881124 

1501 0.0795775 168.00799 0.0798172 168.133 0.0002397 0.12501 0.3012158 0.0744072 

Table 4. Comparison of Green's Function with LSVOCN for Test Case 1 
(Vary the Source Sound-Speed) - w2(y) with Negative Gradient. 
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Sound Speed 
Source 

m/s 

1485 

1488 

1491 

1494 

Magnitude 
Green's Func 

m'/s 

0.0795775 

0.0795775 

0.0795775 

0.0795775 

1497 0.0795775 

SOURCE FREQUENCY = 1000Hz 
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS 
 SURFACE SOUND-SPEED = 1500 m/s 

Phase 
Green's Func 

Deg. 

297.57576 

298.06452 

298.55131 

299.03614 

299.51904 

Magnitude 
LSVOCN 

m'/s 

0.0787358 

0.0787811 

0.0788484 

0.0789214 

0.079039 

Phase 
LSVOCN 

Deg. 

297.709 

298.174 

298.647 

299.099 

299.546 

Delta 
Magnitude 

m'/s 

-0.0008417 

-0.0007964 

-0.0007291 

-0.0006561 

-0.0005385 

Delta 
Phase 
Deg. 

0.13324 

0.10948 

0.09569 

0.06286 

0.02696 

-0.00089 

*/. Difference 
Magnitude 

-1.057711 

-1.0007854 

-0.9162138 

-0.8244793 

-0.6766988 

-0.5460086 

% Difference 
Phase 

0.0447752 

0.0367303 

0.0320514 

0.0210209 

0.0090011 

-0.0002968 

Table 5. Comparison of Green's Function with LSVOCN for Test Case 1 
(Vary the Source Sound-Speed) - n2(y) with Positive Gradient. 

SOURCE FREQUENCY = 250Hz                                       ^^^m^M 
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS 

SURFACE SOUND-SPEED = 1500 m/s 
Sound Speed 

Source 
m/s 

Magnitude 
Green's Func 

m'/s 

Phase 
Green's Func 

Deg. 

Magnitude 
LSVOCN 

■rVs 

Phase 
LSVOCN 

Deg 

Delta 
Magnitude 

mJ/s 

Delta 
Phase 
Deg. 

% Difference 
Magnitude 

% Difference 
Phase 

1485 0.0795775 119.39394 0.0791194 119.774 -0.0004581 0.38006 -0.5756652 0.3183244 
1488 0.0795775 119.51613 0.0791708 119.885 -0.0004067 0.36887 -0.5110741 0.3086362 
1491 0.0795775 119.63783 0.0791928 119.958 -0.0003847 0.32017 -0.4834281 0.267616 
1494 0.0795775 119.75904 0.0792593 120.06 -0.0003182 0.30096 -0.3998618 0.2513046 
1497 0.0795775 119.87976 0.0793556 120.145 -0.0002219 0.26524 -0.2788477 1 0.221255 
1499 0.0795775 119.95997 0.0794502 120.185 -0.0001273 0.22503 -0.1599698 I 0.1875876 

. 
Table 6. Comparison of Green's Function with LSVOCN for Test Case 1 

(Vary the Source Sound-Speed) - n2(y) with Positive Gradient. 

|So und Speed 
Source 

m/s 

1485 

1488 

1491 

1494 

1497 

1499 

Magnitude 
Green's Func 

m'/s 

0.0795775 

0.0795775 

0.0795775 

0.0795775 

0.0795775 

0.0795775 

SOURCE FREQUENCY = 50Hz 
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS 
 SURFACE SOUND-SPEED = 1500 m/s 

Phase 
Green's Func 

Deg. 

167.87879 

167.90323 

167.92757 

167.95181 

167.97595 

167.99199 

Magnitude 
LSVOCN 

m'/s 

0.0797431 

0.0797786 

0.0797322 

0.0797651 

0.0797772 

0.0797195 

Phase 
LSVOCN 

Deg. 

168.123 

168.138 

168 136 

168.142 

168 135 

168.103 

Delta 
Magnitude 

m'/s 

0.0001656 

0.0002011 

0.0001547 

0.0001876 

0.0001997 

0.000142 

Delta 
Phase 
Deg. 

0.24421 

0.23477 

0.20843 

0.19019 

0.15905 

0.11101 

% Difference 
Magnitude 

0.208099 

0.2527096 

0.1944017 

0.235745 

0.2509503 

0.1784424 

•/• Difference 
Phase 

0.145468 

0.1398246 

0.124119 

0.1132408 

0.0946862 

0.0660805 

Table 7. Comparison of Green's Function with LSVOCN for Test Case 1 
(Vary the Source Sound-Speed) - n2(y) with Positive Gradient. 
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2. Green's Function Test Case Two - Vary the Horizontal Range 

The second test case involved varying the horizontal range while maintaining the 

source and receiver depths fixed at 150 meters. For this case the surface and source 

sound-speeds are not varied. If the receiver is fixed at the source depth (150 meters) and 

the horizontal range is increased, then the magnitude of the velocity potential should 

decrease by a factor of \IA%R, independent of frequency, as predicted by Eq.(3.4). 

Furthermore, it should be observed that the phase varies as predicted by Eq.(3.5): 

Zq^TC^l-^). (3.15) 

The above observations are reasonable assumptions to make even though the modeled 

ocean medium is not homogeneous. As long as the receiver is maintained at the same 

depth as the source, then the sound speed is constant, which simulates a homogeneous 

ocean medium. 

To conduct the second Green's function test case, the receiver depth and source 

depth are both fixed at 150 meters. The surface sound-speed is fixed at 1500 m/s and the 

source sound-speed is fixed at 1515 m/s for a negative gradient for the square of the 

index of refraction, and 1485 m/s for a positive gradient for the square of the index of 

refraction. Horizontal range values selected were 2.0, 3.0, and 5.0 meters. These values 

were selected based on the amount of CPU time required to calculate the velocity 

potential (magnitude and phase) for each selected receiver depth, horizontal range pair. 

Because we were making calculations at the source depth, the DIFF term given by 

Eq.(3.9) was equal to zero, which made the exp(-DIFF) term in Eq.(3.10) equal to one. 

This condition caused the oscillations of the integrand in Eq.(3.6) to decay very slowly, 

thus making integration more difficult resulting in more CPU time being required. In 

addition, as kr increases (for a fixed r) the zeroth-order Bessel function in Eq.(3.6) 

oscillates more rapidly, making the numerical integration more difficult. Any calculation 

requiring more than 60 minutes of CPU time was stopped by the computer. The test case 

results are summarized in Tables 8 and 9. Calculations that required greater than 60 
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minutes of CPU time are denoted by: >60 min. The delta's and percentage differences 

were calculated in the same manner as discussed previously. The data in Tables 8 and 9 

show that as the horizontal range increases while maintaining the receiver at the source 

depth, the velocity potential (magnitude and phase) calculated by LSVOCN behaves 

according to the Green's function for a free-space homogeneous ocean medium as 

predicted by Eq.(3.4) and Eq.(3.5) with S0 = 1 - our second validation. 

1 SOURCE DEPTH = RECEIVER DEPTH =150 METERS                   l™^™"" 
SURFACE SOUND-SPEED = 1500 m/s SOURCE SOUND-SPEED - 1515 m/s 

1 Frequency 
1    Hertz 

Range 
meters 

Green's 
Func 

Magnitude 
mVs 

Green's 
Func 
Phase 

LSVOCN 
Magnitude 

mVs 

LSVOCN 
Phase 
»eg. 

Delta 
Magnitude 

mVs 

Delta 
Phase 
Deg. 

% 
Difference 
Magnitude 

% Difference 
Phase 

1    1000 2 0.0397887 64.752475 >60 min >60 min N/A N/A N/A N/A 1 3 0.0265258 187.12871 >60 min >60 min N/A N/A N/A N/A 1 5 0.0159155 71.881188 >60 min >60 min N/A N/A N/A N/A 
1     250 2 0.0397887 61.188119 0.0395919 61.221 -0.0001968 0.032881 -0.4946128 0.0537376 1 3 0.0265258 1.7821782 0.0264635 2.343 -0.0000623 0.5608218 -0.2348657 31.4683346 1 5 0.0159155 242.9703 >60 min >60 min N/A N/A N/A N/A 

1      5° 2 0.0397887 156.23762 0.0397634 156.67 -0.0000253 0.43238 -0.0635859 0.2767451 1 3 0.0265258 144.35644 0.0264378 144.937   |   -0.0000881 0.58056 -0.3317525 0.4021712| 
5 0.0159155 120.59406 0.0157484 121.152   |-0.000167l| 0.55794 -1.04991991 0.46265961 

Table 8. Comparison of Green's Function with LSVOCN for Test Case 2 
(Vary Horizontal Range) - w2(y) with Negative Gradient. 

Frequency 
Hertz 

1000 

SOURCE DEPTH = RECEIVER DEPTH = 150 METERS 
SURFACE SOUND-SPEED - 1500 m/s SOURCE SOUND-SPEED - 1485 m/s 

Range 
meters 

250 

50 

Green's 
Func 

Magnitude 
m'/i 

0.0397887 

Green's 
Func 
Phase 
Deg. 

0.0265226 

0.0159155 

0.0397887 

0.0265226 

0.0159155 

0.0397887 

0.0265226 

0.0159155 

55.151515 

172.72727 

LSVOCN 
Magnitude 

m'/s 

>60 min 

LSVOCN 
Phase 
Deg. 

>60 min 

47.878788 

58.787879 

358.18182 

236.9697 

155.75758 

143.63636 

119.39394 

>60 min 

>60 min 

0.0396074 

0.0264458 

>60 min 

0.039789? 

0.0264342 

0.0157441 

>60 min 

>60 min 

58.825 

358.687 

>60 min 

156.212 

Delta 
Magnitude 

m'/s 

N'A 

N/A 

N/A 

-0.0001813 

-0.0000768 

N/A 

0.0000006 

Delta 
Phase 
Deg. 

% 
Difference 
Magnitude 

N/A 

N/A 

N/A 

0.037121 

0.50518 

N/A 

0.45442 

N/A 

-N/A 

N/A 

-0.455657 

-0.2895644 

N/A 

0.001508 

144.218   |-0.0000884|      0.58164  -0.3333007 

119.928   |-0.0(X)|714|      0.534061-1.0769376 

Difference 
Phase 

N/A 

N/A 

N/A 

0.063144 

0.1410401 

N/A 

0.2917482 

0.4049393 

0.4473091 

Table 9. Comparison of Green's Function with LSVOCN for Test Case 2 
(Vary Horizontal Range ) - w2(y) with Positive Gradient. 
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As a final note on the second Green's function test case, as can be observed from 

Tables 8 and 9, the delta magnitudes all agree out to three significant digits, and in some 

cases better. This fact was consistent with the magnitude differences as calculated in the 

first Green's function test case. Also, for small velocity potential phases, small phase 

errors result in large percentage differences, as expected. 

3. Green's Function Test Case Three - Vary the Receiver Depth 

The third Green's function test case involved varying the receiver depth above 

and below the source depth, while maintaining the source and surface sound-speeds fixed 

at 1515/1485 m/s and 1500 m/s, respectively. As was stated before, the modeled ocean 

medium is not homogeneous; however, for the previous two Green's function tests, the 

receiver depth was maintained at the source depth and the source sound-speed was varied 

to more closely match the surface sound-speed (Test Case 1) or maintained constant 

(Test Case 2) which simulated a homogeneous ocean medium. For this case, the receiver 

was moved slightly above and below the source depth, and as a result, the Green's 

function results are less valid. As can be seen from Figure 9, even though the receiver is 

not located at the source depth, the actual change in the sound speed at the receiver is 

very small. Because the ocean medium acts very much like a homogeneous medium 

when receivers and sources are "close", the velocity potential (magnitude and phase) 

computed using the free-space Green's function for a homogeneous ocean medium is a 

valid approximation. This test case allowed us to validate the remaining part of the 

computer code in LSVOCN for a source and receiver at different depths, prior to 

comparing it with the RRA Algorithm. This test case was conducted with a source 

operating at 1000 Hz (excluding cases for the source operating at 250 Hz and 50 Hz since 

validation at one frequency was adequate). The third Green's function test case is 

summarized in Table 10. The test case was conducted four times: 

1. For the square of the index of refraction with a negative gradient and a 
receiver depth of 150.5 meters and a horizontal range of 0.8660254 meters. 

2. For the square of the index of refraction with a negative gradient and a receiver 
depth of 149.5 meters and a horizontal range of 0.8660254 meters. 
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3. For the square of the index of refraction with a positive gradient and a receiver 
depth of 150.5 meters and a horizontal range of 0.8660254 meters. 

4. For the square of the index of refraction with a positive gradient and a receiver 
depth of 149.5 meters and a horizontal range of 0.8660254 meters. 

Receiver Depth 
149.5 meters 

Source depth 
150 meters 

Receiver Depth 
150.5 meters 

Region I: Receiver above the source 

R = 1 meter 

r= 0.8660254 meters 

i ► 

R = 1 meter 

8=120° 

Region II: Receiver below the source 

Figure 9. Geometry for Green's Function Test Case 3 (Vary Receiver Depth). 

The surface sound-speed is maintained at 1500 m/s. The source sound-speed is 

maintained at 1515 m/s when the square of the index of refraction has a negative 

gradient, and 1485 m/s when the square of the index of refraction has a positive gradient. 

Calculations are based on Eq.(3.4) and Eq.(3.5) where R and c are treated as variables. 

As can be observed from Table 10, the change in the sound speed at the location of the 

receiver is very small, making our assumptions for this test case reasonable. Analysis of 

the data presented in Table 10 show that LSVOCN calculated values for the velocity 

potential (magnitude and phase) are approximately equal to those predicted by the 

Green's function - our third validation. The Delta's and percentage differences were 

calculated in the same manner as discussed before. 
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SURFACE SOUND-SPEED = 1500 M/S 
r = 0.8660254 METERS, FREQ = 1000 Hz 

Source 
Sound 
Speed 

m/s 

Receiver Sound 
Speed 

m/s 

Receiver 
Depth 
meters 

Green's 
Func 

Magnitude 
m2/s 

Green's 
Func 
Phase 
deg. 

LSVOCN 
Mag 
mVs 

LSVOCN 
Phase 
deg. 

Delta 
Mag 
m'/s 

Delta 
Phase 
deg. 

•/.Diff 
Mag 

•/.Dili 
Phase 

1515 1514.9492501 149.5 0.0795775 302.3683 0.0795773 302.37 -0.0000002 0.0017 -0.0002513 0.0005622 
1515 1515.0507551 150.5 0.0795775 302.3842 0.079575 302.381 -0.0000025 -0.0032 -0.0031416 -0.0010583 
1485 1485.0492549 149.5 0.0795775 297.5838 0.079575 297.58 -0.0000025 -0.0038 -0.0031416 -0.001277 
1485 1484.95075 150.5 0.0795775 297.5677 0.079577 297.569 -0.0000005 0.0013 -0.0006283 0.0004369 

Table 10. Comparison of Green's Function with LSVOCN for Test Case 3 
(Vary the Receiver Depth) - n2(y) with Negative and Positive Gradients. 

C. COMPARISON OF LSVOCN WITH THE RECURSIVE RAY ACOUSTICS 
ALGORITHM 

1. Test Preparation 

The RRA Algorithm calculates the magnitude in Pascals and phase in degrees of 

the acoustic pressure along a ray path. The source is modeled as a time-harmonic, 

omnidirectional point source, with its strength represented by a source level (SL) value in 

decibels relative to one micro-pascal (rms). The "Airy function solution" is in terms of 

velocity potentials and is based on a time-harmonic, omnidirectional point source 

modeled by a unit amplitude impulse function. Thus, before the magnitudes and phases 

from the RRA Algorithm and LSVOCN (the "Airy function solution") could be 

compared, the velocity potential expressions were transformed into acoustic pressure 

expressions using the following equation for time-harmonic fields [Ref. 2, Chapter 2]: 

P/(r,y) = -fiitfpo(p/(r,y) (3.16) 

where/ is the frequency of the source in Hz, and p0 is the ambient or equilibrium 
density of the fluid medium in kg/m\ 

In addition, the magnitudes from LSVOCN had to be made equivalent to the 

magnitudes computed by the RRA Algorithm by relating the source level in decibels to 

the amplitude of the impulse function used to model the omnidirectional point source in 

LSVOCN. This was accomplished by deriving a magnitude scale factor that relates a 
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source level in decibels to the source strength of a spherical sound source operating in the 

monopole mode of vibration as the radius of the sphere approaches zero [see Eq.(3.3)]. 

Thus, substituting Eq.(3.3) into Eq.(3.16) yields 

PÄR,^)=+J/poSoexpiJcR) ,R>0. (3.17) 

The magnitude of Eq.(3.17) is given by 

\pf(RAv)\=i£so,R>0. (3.18) 

Thus, the peak acoustic pressure, P0, at R equal to one meter is 

Po = \pAR,^)\R=i=^-S0. (3.19) 

Therefore, the source strength, S0, in m3/s, is given by 

So = ^- (3.20) 

The peak acoustic pressure, P0, in Pascals [Ref. 2, Chapter 1] due to a given source level 

in decibels is given by: 

Po = J2 /vioii) (321) 

where Pn/is the reference pressure equal to one micro-pascal (rms), and SL is the source 

level of the source in decibels relative to Pnf. Since the source level used by the RRA 

Algorithm is a known constant (180.0 dB), the peak acoustic pressure can be calculated 

using Eq.(3.21). This result can then be substituted into Eq.(3.20) allowing the source 
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strength to be computed. The resulting source strength value, S0, is the magnitude scale 

factor that was used to multiply the output from LSVOCN. 

In summary, the conversion process to make the LSVOCN magnitude and phase 

equivalent to that computed by the RRA Algorithm is as follows [multiply the right-hand 

side of Eq.(3.16) by Eq.(3.20)]: 

Pf{r,y) = -j2%fpo^fir,y) = -j47zPo<?fir,y), (3.22) 

where P0 is given by Eq.(3.21). Equation (3.22) was added as FORTRAN computer code 

to LSVOCN so that the conversion process would be taken care of automatically. 

2. Comparison of the RRA Algorithm with LSVOCN when n2(y) has a 

Negative Gradient 

The RRA Algorithm was used to simulate various ray paths propagated through 

the ocean medium when the square of the index of refraction was a linear function of 

depth with a negative gradient, corresponding to a positive gradient sound-speed profile. 

Two ray paths identified by the initial launch angle, ß0, were selected for each of the test 

frequencies, 1000 Hz, 250 Hz, and 50 Hz. The sound-speed profile and the ray 

propagation path for each ray is illustrated in Figure 10. Launch angles were selected so 

that the ray paths did not interact with the ocean surface or bottom, thus ensuring that the 

magnitude and phase calculated by the RRA Algorithm were for a free-space propagation 

problem. Test points along each ray path were selected. The depth (receiver depth) and 

the horizontal range (HRNG) corresponding to these points were recorded and used as 

inputs to LSVOCN. The comparison between the RRA Algorithm and LSVOCN 

magnitude and phase values are summarized in Tables 11 through 13, where the asterisk 

"*" means that the entire row corresponds to data at the location of a turning point. The 

calculated values in Tables 11 through 13 were obtained as follows: 

1. Delta magnitude = RRA Magnitude - LSVOCN Magnitude 

2. Delta phase = RRA Phase - LSVOCN Phase 
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3. Initial phase offset = Delta phase of the first point for each ray 

4. Adj RRA Phase = (RRA Phase - Initial phase offset) 
a) Add 360° if Adj RRA Phase angle is negative 
b) Subtract 360° if Adj RRA Phase angle is greater than 360° 
c) Do not add or subtract if Adj RRA Phase angle is positive and less than 360° 

5. % Difference Magnitude = RRA Mag"itude - LSVOCN Magnitude 
LS VOCN Magnitude XWÖ/o 

6. % Difference Phase = Adj RRA Phase - LSVOCN Phase 
LSVOCN Phase xiuu/o 

Analysis of the data if Tables 11 through 13 indicate that the magnitudes and 

phases calculated by the RRA Algorithm match reasonably well with the magnitudes and 

phases calculated by LSVOCN. Note that there is an initial phase difference that exists 

between the RRA Algorithm and LSVOCN. The RRA Algorithm begins with zero phase 

and calculates the phase thereafter based on travel time as a ray propagates. In order to 

correct for this initial phase difference, each RRA phase angle after the first data point on 

each ray is adjusted by an amount equal to the delta phase of the first data point. After 

the RRA phase has been adjusted, a valid comparison between the RRA phase and 

LSVOCN phase can be performed. It can further be observed that the percentage phase 

error tends to increase as the ray propagates. This seems reasonable since small errors 

made in calculating travel time and, hence, phase in the beginning accumulate as the ray 

propagates further from the source. These phase errors could possibly be reduced by 

selecting a smaller arc length step size used by the RRA Algorithm. 
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a    a §    § 

Figure 10. Raytrace when the square of the index of refraction is a linear function of 
depth with a negative gradient for two separate ray paths with ß0 = 82° and 90°. 
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SURFACE SOUND-SPEED = 1500 m/s, SOURCE-SOUND SPEED = 1515 m/s 
SOURCE DEPTH = 150 m, n2(y) WITH NEGATIVE GRADIENT 

FREQU WCY=1000HZ, "*" TURNIN G POINT DATA 

Table 11 Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different 
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by ß0 . 

Table 12. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different 
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by ß0 
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SURFACE SOUND-SPEED = 1500 m/s, SOURCE SOUND-SPEED = 1515 m/s 
SOURCE DEPTH = 150 m, n2(y) WITH NEGATIVE GRADIENT 

FREQUENCY = 50 HZ, "*" TURNING POINT DATA 
Receiver 

Depth 
meters 

Receiver 
HRNG 
meters 

RRA 
Mag 

Pascals 

RRA 
Phase 

Degree 

LSVOCN 
Mag 

Pascals 

LSVOCN 
Phase 

Degrees 

DELTA 
Mag 

Pascals 

DELTA 
Phase 

Degrees 

AdjRRA 
Phase 

Degrees 

%DIFF 
Mag 

%DIFF 
Phase 

ß„=82° 
150.139 0.99 1414.21 348.119 1396.42 77.964 17.79 270.155 N/A 1.27397 N/A 
211.757 500.178 2.80646 144.851 2.7779 235.583 0.02856 -90.732 234.696 1.02811 -0.37651 
256.408 1000.164 1.40685 334.76 1.44067 63.371 -0.03382 271.389 64.605 -2.34752 1.94726 
283.987 1500.38 0.94006 190.988 0.89268 281.376 0.04738 -90.388 280.833 5.30761 -0.19298 
* 294.58 2056.996 0.68751 118.946 0.7305 207.172 -0.04299 -88.226 208.791 -5.88501 0.78148 
223.48 3499.913 0.40689 7.284 0..361466 99.872 0.04542 -92.588 97.129 12.66604 -2.74652 
90.742 4499.953 0.31804 269.415 0.36089 355.423 -0.04285 -86.008 359.26 -11.87342 1.07956 

1 4988.762 0.28757 83.936 0.32794 168.751 -0.04037 -84.815 173.781 -12.31018 2.98072 

ßo=90° 
150 1 1414.21 348.119 1425.34 78.211 -11.13 269.908 N/A -0.78087 N/A 

141.636 499.907 2.82896 178.297 2.8749 267.929 -0.04594 -89.632 268.389 -1.59797 0.17169 
116.533 999.753 1.41456 343.989 1.4166 75.872 -0.00204 268.117 74.081 -0.14401 -2.36055 
74.652 1499.98 0.94282 118.485 0.95694 205.742 -0.01412 -87.257 208.577 -1.47554 1.37794 
16.029 2000.033 0.7071 215.056 0.67256 302.346 0.03454 -87.29 305.148 5.1356 0.92675 

Table 13. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different 
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by ß0. 

3. Comparison of the RRA Algorithm with LSVOCN when n2 (y) has a 

Positive Gradient 

The RRA Algorithm was used to simulate various ray paths propagated through 

the ocean medium when the square of the index of refraction was a linear function of 

depth with a positive gradient, corresponding to a negative gradient sound-speed profile. 

Two ray paths identified by the initial launch angle, ß0, were selected for each of the test 

frequencies, 1000 Hz, 250 Hz, and 50 Hz. The sound-speed profile and the ray 

propagation path for each ray is illustrated in Figure 11. Launch angles were selected so 

that the ray paths did not interact with the ocean surface or bottom, thus ensuring that the 

magnitude and phase calculated by the RRA Algorithm were for a free-space propagation 

problem. Test points along each ray path were selected. The depth (receiver depth) and 

the horizontal range (HRNG) corresponding to these points were recorded and used as 

inputs to LSVOCN. The comparison between the RRA Algorithm and LSVOCN 

magnitude and phase values are summarized in Tables 14 through 16, where the asterisk 

"*n means that the entire row corresponds to data at the location of a turning point. The 
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calculated values in Tables 14 through 16 were obtained in the same manner as was done 

for Tables 11 through 13. Analysis of the data in Tables 14 through 16 indicate that the 

magnitudes and phases calculated by the RRA Algorithm match reasonably well with the 

magnitudes and phases calculated by LSVOCN. Note that there is an initial phase 

difference that exists between the RRA Algorithm and LSVOCN. The RRA Algorithm 

begins with zero phase and calculates the phase thereafter based on travel time as a ray 

propagates. In order to correct for this initial phase difference, each RRA phase angle 

after the first data point on each ray is adjusted by an amount equal to the first delta 

phase of the first data point. After the RRA phase has been adjusted, a valid comparison 

between the RRA phase and LSVOCN phase can be performed. It can further be 

observed that the percentage phase error tends to increase as the ray propagates. This 

seems reasonable since small errors in the beginning accumulate as the ray propagates 

further from the source. These phase errors could possibly be reduced by selecting a 

smaller arc length step size used by the RRA Algorithm. Also, for small acoustic 

pressure phases, small errors result in large percentage differences, as expected. 

s URFACE SOUND-SPEED = 150 
SOURCE DEPTH = 150 m 

FREQUENCY = 1000 I 

3 m/s, SOURCE SOUND 
n2(y) WITH POSITIVE ( 

IZ, "*" TURNING POINT 

-SPEED 
3RADIE 
rDATA 

= 1485 m/s 
NT 

Receiver 
Deptb 
meters 

Receiver 
HRNG 
meters 

RRA 
Mag 

Pascals 

RRA 
Phase 

Degree 

LSVOCN 
Mag 

Pascals 

LSVOCN 
Phase 

Degrees 

DELTA 
Mag 

Pascals 

DELTA 
Phase 

Degrees 

RRAAdj 
Phase 

Degrees 

%DIFF 
Mag 

%DIFF 
Phase 

P0=98" 

149.861 0.99 1414.21 117.577 1414.14 207.61 0.07 -90.033 N/A 0.00495 N/A 
88.159 500.168 2.80645 120.409 2.82886 209.598 -0.02241 -89.189 210.442 -0.79219 0.40268 
43.255 1000.132 1.40682 77.211 1.36943 166.044 0.03739 -88.833 167.244 2.73033 0.7227 
15.25 1500.325 0.94002 210.833 0.97634 299.001 -0.03631 -88.168 300.866 -3.72002 0.62374 

• 3.967 2077.678 0.68067 138.344 0.64677 231.267 0.03389 -92.923 228.377 5.24143 -1.24964 
72.257 3498.868 0.40695 270.66 0.38583 6.948 0.02111 263.712 0.693 5.47391 -90.02591 

202.264 4499.27 0.31802 42.263 0.36148 135.816 -0.04346 -93.553 132.296 -12.0228 -2.59174 
290.462 4988.36 0.28753 120.254 0.23971 208.418 0.04781 -88.164 209.087 19.94911 0.32099 
ßo=90" 

150 1 1414.21 117.576 1399.25 207.709 14.96 -90.133 N/A 1.06914 N/A 
158.268 499.534 2.83107 176.655 2.78723 266.248 0.04384 -89.593 266.788 1.57289 0.20282 
183.11 999.394 1.41507 8.009 1.45581 97.086 -0.04074 -89.077 98.142 -2.79844 1.0877 

224.566 1499.657 0.94303 288.292 0.95899 20.833 -0.01597 267.459 18.425 -1.66425 -11.55858 
282.604 1999.778 0.70719 162.897 0.70929 249.048 -0.00211 -86.151 253.03 -0.29607 1.59889 

Table 14. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different 
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by ß0. 
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SURFACE SOUND-SPEED = 1500 m/s, SOURCE SOUND-SPEED = 1485 m/s 
SOURCE DEPTH = 150 m, n2(y) WITH POSITIVE GRADIENT 

FREOUENCY = 250 HZ, "*" TURNING POINT DATA 
Receiver 

Depth 
meters 

Receiver 
HRNG 
meters 

RRA 
Mag 

Pascals 

RRA 
Phase 

Degree 

LSVOCN 
Mag 

Pascals 

LSVOCN 
Phase 

Degrees 

DELTA 
Mag 

Pascals 

DELTA 
Phase 

Degrees 

RRAAdj 
Phase 

Degrees 

%DIFF 
Mag 

%DIFF 
Phase 

ß„=98° 

149.861 0.99 1414.21 299.394 1415.07 29.447 -0.86 269.947 N/A -0.06077 N/A 
88.159 500.168 2.80645 120.102 2.77775 209.334 0.0287 -89.232 210.155 1.03321 0.3922 
43.255 1000.132 1.40682 109.303 1.44734 200.284 -0.04052 -90.981 199.356 -2.79962 -0.46334 
15.25 1500.325 0.94002 232.708 0.98028 321.198 -0.04026 -88.49 322.761 -4.10699 0.48662 

♦ 3.967 2077.678 0.68067 124.586 0.67268 218.573 0.00799 -93.987 214.639 1.18779 -1.79986 
72257 3498.868 0.40695 247.665 0.4037 344.465 0.00325 -96.8 337.718 0.80505 -1.95869 

202.264 4499.27 0.31802 10.566 0.30859 91.865 0.00943 -81.299 100.619 3.05583 9.5292 

290.462 4988.36 0.28753 300.064 0.33218 33.548 -0.04464 266.516 30.117 -13.44151 -10.22714 

ß„=90° 

150 1 1414.21 299.394 1406.07 29.774 8.14 269.62 N/A 0.57892 N/A 
158.268 499.534 2.83107 314.164 2.80951 44.984 0.02156 269.18 44.544 0.76739 -0.97813 
183.11 999.394 1.41507 182.002 1.37475 272.98 0.04032 -90.978 272.382 2.9329 -0.21906 

224.566 1499.657 0.94303 252.073 0.94032 339.194 0.00271 -87.121 342.453 05882 0.96081 
282.604 1999.778 0.70719 130.724 0.67483 223.51 0.03236 -92.786 221.104 4.79528 -1.07646 

Table 15. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different 
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by ßo. 

SURFACE SOUND-SPEED = 15C 
SOURCE DEPTH = 150 rr 

FREOUENCY = 50 H 

10 m/s, S 
i,n2(y)\ 
7  it$ttr 

.OURCE SOUN 
NTYH POSITIV! 
URNING POIN 

D-SPEED = 1485 m/s 
i GRADIENT 
TDATA 

Receiver 
Depth 
meters 

Receiver 
HRNG 
meters 

RRA 
Mag 

Pascals 

RRA 
Phase 

Degree 

LSVOCN 
Mag 

Pascals 

LSVOCN 
Phase 

Degrees 

DELTA 
Mag 

Pascals 

DELTA 
Phase 

Degrees 

RRAAdj 
Phase 

Degrees 

%DIFF 
Mag 

%DIFF 
Phase 

ß„=98" 

149.861 0.99 1414.21 347.879 1395.57 77.713 18.64 270.166 N/A 1.33565 N/A 
88.159 500.168 2.80645 24.02 2.8002 112.986 0.00625 -88.966 113.854 0.2232 0.76824 
43555 1000.132 1.40682 93.861 1.37231 182.489 0.03451 -88.628 183.695 2.51474 0.66086 
15.25 1500.325 0.94002 190.542 0.89886 279.047 0.04116 -88.505 280.376 4.57913 0.47626 

•3.967 2077.678 0.68067 96.917 0.72557 188.197 -0.0449 -91.28 186.751 -6.18824 -0.76834 
72.257 3498.868 0.40695 265.533 0.43785 350.513 -0.0309 -84.98 355.367 -7.05721 1.38483 
202.264 449957 0.31802 290.113 0.36357 17.357 -0.04555 272.756 19.947 -12.52854 14.92193 
290.462 4988.36 0.28753 348.013 0.3022 86.994 -0.01467 261.019 77.847 -4.8544 -10.51452 

ßo=90° 

150 1 1414.21 347.879 1417.16 78.123 -2.95 269.756 N/A -0.20816 N/A 
158.268 499.534 2.83107 62.833 2.82662 153.724 0.00445 -90.891 153.077 0.15743 -0.42088 
183.11 999.394 1.41507 108.4 1.45024 197.13 -0.03517 -88.73 198.644 -2.42512 0.76802 

224.566 1499.657 0.94303 122.415 0.94316 209.544 -0.00013 -87.129 212.659 -0.01378 1.48656 
282.604 1999.778 0.70719 98.145 0.74101 185.56 -0.03382 -87.415 188.389 -4.56404 1.52457 

Table 16. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different 
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by ß0. 
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Figure 11. Raytrace when the square of the index of refraction is a linear function of 
depth with a positive gradient for two separate ray paths with ß0 = 90° and ß„ = 98°. 
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IV. SUMMARY AND RECOMMENDATIONS 

This thesis had two primary goals. First, derive and document the solution to the 

three-dimensional inhomogeneous Heimholte equation for a free-space propagation 

problem when the square of the index of refraction of the ocean medium is a linear 

function of depth, and the source is an omnidirectional point source. Given this type of 

index of refraction, the solution to the inhomogeneous Heimholte equation has an exact 

solution in terms of Airy functions. This exact solution, in terms of Airy functions, was 

then incorporated into the computer program Linear Space-Variant Ocean (LSVOCN) as 

an additional ocean medium transfer function. The second goal was to further test the 

Recursive Ray Acoustics (RRA) Algorithm by comparing the magnitudes and phases of 

the acoustic sound pressure calculated, at various points, along a ray path generated by 

the RRA Algorithm with corresponding magnitudes and phases calculated by LSVOCN 

along the same ray path. 

In Chapter II, the solution to the aforementioned Helmholte equation was 

carefully derived and documented. This documentation served to record in detail the 

steps that led to the final Airy function solution. 

The next step in the solution process was to convert the theoretical Airy function 

solution to the FORTRAN computer code that was used by LSVOCN. The main 

problems in the conversion process were the many numerical errors that developed. 

There were two main numerical errors encountered, overflow and underflow errors. 

Overflow errors resulted from the evaluation of the Bairy function with large positive 

argument values. The Airy function did not have this problem since it is well behaved for 

both negative and positive argument values. A graphical representation of both the Airy 

and Bairy functions is shown in Figures 7 and 8, respectively. Overflow errors result in 

the termination of the computer code before it has finished a calculation. Thus no answer 

is ever obtained - a serious problem. To prevent overflow errors, we used the 

exponentially scaled Airy and Bairy functions, also shown in Figures 7 and 8. These two 

functions allowed a significant advance towards a working FORTRAN computer code 

that would solve the "Airy function solution" as given by Eq.(2.75) through Eq.(2.78). 
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Using the exponentially scaled functions allowed for very large positive values of £(y), 

the argument of the Airy and Bairy functions, to be used. These large positive values of 

£(y) were the result of propagating waves becoming evanescent waves. For the solution 

to be accurate, it is very important to account for these evanescent waves. The 

exponentially scaled functions did not prevent underflow errors. These types of errors do 

introduce some numerical inaccuracies, but do not result in computer program 

termination. 

The last numerical problem to solve was to establish an upper limit of integration 

for Eq.(2.3). Using the computer, it is impossible to literally integrate to infinity. To 

achieve numerical accuracy, the upper limit of integration had to be large enough to 

account for most of the significant evanescent waves. Thus, a method to automatically 

compute this upper limit of integration, regardless of the source frequency selected, was 

developed. 

Before comparing the RRA Algorithm with LSVOCN, we developed test cases to 

validate the Airy function solution and FORTRAN computer code used by LSVOCN. 

This validation was carried out by comparing the magnitude and phase of the velocity 

potential equal to the free-space Green's function of a homogeneous ocean medium with 

the magnitude and phase of the velocity potential computed by LSVOCN. The 

free-space Green's function was chosen because we could make the modeled ocean 

medium used by LSVOCN "simulate" a homogeneous medium without actually being 

made homogeneous. Therefore, the Green's function provided a simple theoretical 

solution that we could compare the calculated solution of LSVOCN with. All three 

Green's function test cases discussed in detail in Chapter III gave very good results. Now 

we were finally ready to test calculated values from the Recursive Ray Acoustics (RRA) 

Algorithm with those predicted by LSVOCN. 

The RRA Algorithm versus LSVOCN comparison tests were conducted first, 

when the square of the index of refraction had a negative gradient and second, when the 

square of the index of refraction had a positive gradient. The test results indicated that 

the magnitudes from the RRA Algorithm and LSVOCN were in close agreement. In 
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order to be able to compare the RRA Algorithm with LSVOCN, a magnitude scale factor 

was derived that related the source level in decibels used by the RRA Algorithm to the 

amplitude of the impulse function used to model the omnidirectional point source in 

LSVOCN. The magnitudes of LSVOCN were extremely close to the values predicted by 

the RRA Algorithm. 

The phase comparisons between the RRA Algorithm and LSVOCN were also 

quite good. The initial phase offset between LSVOCN and the RRA Algorithm was 

determined by calculating the phase differences, one meter from the source, between the 

RRA Algorithm and LSVOCN, i.e., the phase difference between the RRA Algorithm 

and LSVOCN of the first data point of each ray path. Once this difference was 

determined, it was subtracted from the other phase values, less the first data point, 

calculated by the RRA Algorithm along the same ray path. It was observed that the 

percentage phase error tended to grow as the receiver was moved further from the source. 

This trend makes intuitive sense because it suggests that small phase errors in the 

beginning are propagated and accumulated as the ray travels further from the source. It 

was also observed that several data points resulted in large percentage differences for the 

phase. These large percentage differences, resulting from the variance between small 

phases could possibly be reduced by making the integration step size a function of the 

wave number rather than a fixed quantity. 

Because ray acoustics is an approximate solution of the wave equation, 

characterized as a "high frequency" approximation, we expected to see better and better 

agreement between the RRA Algorithm and LSVOCN as the source frequency increased 

from 50 Hertz to 1000 Hertz. The data in Tables 11 through 16 did not indicate such a 

trend for all cases. In fact, some percentage errors in magnitude and phase are larger for 

the 1000 Hertz case than the 50 Hertz case. The expected results could possibly be 

observed if the integration step size were made a function of the wave number, as 

discussed earlier. The results from all six test cases comparing the RRA Algorithm with 

LSVOCN indicate that the RRA Algorithm was, in general, accurate regardless of the 

frequency selected. 
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As a final note, the CPU time required by the RRA Algorithm to compute all of 

the magnitudes and phases for thousands of points along each ray path was typically on 

the order of 30 seconds. Table 17 gives the approximate CPU times for each LSVOCN 

data point calculated. Examination of Table 17 reveals that the RRA Algorithm is a much 

more efficient method to calculate the acoustic pressure compared to the Airy function 

wave solution. The wave solution not only takes considerably more time, but is also more 

susceptible to numerical inaccuracies. 

CPU TIMES PER DATA POINT CALCULATED BY LSVOCN 

ßo= 90° ßo= 82° ßcr 90° 1         ß«r 98° 
ex of refraction with 
e gradient 

Square of the index of refraction with 
Negative gradient 

Square of the ind 
Positiv 

FREQ = 
1000 HZ 

receiver @ 1 meter 
~59min 

other receiver points 
~6min 

receiver @ 1 meter 
~50min 

other receiver points 
~6min 

receiver @ 1 meter 
~54min 

other receiver points 
~6min 

receiver @ 1 meter 
~22.5 min 

other receiver points 
~6min 

FREQ = 250 
HZ 

receiver @ 1 meter 
~ 16min 

other receiver point 
~5min 

receiver @ 1 meter 
~ 22 min 

other receiver point 
~5 min 

receiver @ 1 meter 
~ 16min 

other receiver point 
~5.5min 

receiver @ 1 meter 
~23 min 

other receiver point 
~5.3 min 

FREQ = 
50 HZ 

receiver @ 1 meter 
~8min 

other receiver point 
~5 min 

receiver @ 1 meter 
-25 min 

other receiver point 
~5 min 

receiver @ 1 meter 
~8.2min 

other receiver point 
~4min 

receiver @ 1 meter 
~26min 

other receiver point 
~5 min 

Table 17. CPU Times Per Data Point Calculated by LSVOCN 

Recommendations for further research include: 

1. To achieve more accurate calculated acoustic pressure values from the RRA 
Algorithm (magnitude and phase) a smaller arc length step size, used by the 
RRA Algorithm, should be selected. Using a smaller arc length step size may 
decrease small phase errors that are propagated and accumulated as the ray 
travels further from the source. 

2. Propagate sound rays, using the RRA Algorithm, such that focal points are 
generated. Compare the RRA Algorithm and LSVOCN results. 

3. Make the integration step size used by Eq.(2.3) a function of the wave number 
to determine if improved accuracy can be obtained. 
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APPENDIX. TABULATED VALUES FOR n2(y),k2
y(y),and £(y) 

FOR DIFFERENT LAUNCH ANGLES AND RECEIVER DEPTHS. 

FREQUENCY = 50 HZ 
SOURCE DEPTH = 150 M 

n2(y) WITH POSITIVE GRADIENT 
RECEIVER DEPTH 

j> = 0 
meters 

j = 50 
meters 

.7 = 100 
meters 

j> = 150 
meters 

y = 200 
meters 

.7 = 250 
meters 

.7 = 300 
meters 

ß„ = 84° 
■to) 
V<y) 
C(y> 

0.98010 
-0.0004016 
1.2249 

0.98673 
-0.0001048 
0.31946 

0.99337 
0.00019213 
-0.58594 

1.00000 
0.00048901 
-1.4913 

1.0066 
0.00078589 
-2.3967 

1.0133 
0.0010828 
-3.3021 

1.0199 
0.0013796 
-4.075 

ßo = 86° 
■2(y) 
*,2(y) 
C(y) 

0.98010 
-0.0006729 
2.0520 

0.98673 
-0.0003759 
1.1466 

0.99337 
-0.0000791 
0.24123 

1.00000 
0.00021778 
-0.66417 

1.0066 
0.00051466 
-1.5696 

1.0133 
0.00081154 
-2.4750 

1.0199 
0.0011084 
-3.3804 

ß0 = 88° 
«to) 
k,2(y) 
C(y) 

0.98010 
-0.0008361 
2.5500 

0.98673 
-0.0005393 
1.6446 

0.99337 
-0.0002424 
0.73915 

1.00000 
0.00005451 
-0.16624 

1.0066 
0.00035139 
-1.0716 

1.0133 
0.00064827 
-1.9770 

1.0199 
0.00094515 
-2.8824 

ßo = 90° 
»to) 
k,2(y) 
«y> 

0.98010 
-0.0008906 
2.7162 

0.98673 
-0.0005938 
1.8108 

0.99337 
-0.0002969 
0.90540 

1.00000 
0.0 
0.0 

1.0066 
0.00029688 
-0.90540 

1.0133 
0.00059376 
-1.8108 

1.0199 
0.00089064 
-2.7162 

ß0 = 92° 
■to) 
V(y) 
C(y) 

0.98010 
-0.0008361 
2.5500 

0.98673 
-0.0005393 
1.6446 

0.99337 
-0.0002424 
0.73915 

1.00000 
0.00005451 
-0.16624 

1.0066 
0.00035139 
-1.0716 

1.0133 
0.00064827 
-1.9770 

1.0199 
0.00094515 
-2.8824 

ßo = 94° 
■to) 
Kto) 
«y> 

0.98010 
-0.0006729 
2.0520 

0.98673 
-0.0003760 
1.1466 

0.99337 
0.00019213 
-0.58594 

1.00000 
0.00048901 
-1.4913 

1.0066 
0.00078589 
-2.3967 

1.0133 
0.0010828 
-3.3021 

1^0199 
0.0011084 
-3.3804 

ß0 = 96° 
■to) 
k,2(y) 
C(y> 

0.98010 
-0.0004016 
1.2249   ' 

0.98673 
-0.0001048 
0.31946 

0.99337 
-0.0001028 
0.031345 

1.00000 
0.00048901 
-1.4913 

1.0066 
0.0010847 
-3.3081 

1.0133 
0.0016844 
-5.1370 

1.0199 
0.0013796 
-4.2075 

ß„ = 98° 
■to) 
k,2(y) 
«y>     I 

0.98010 
-0.0000238 
0.072457 

0.98673 
0.00027312 
-0.83294 

0.99337 
0.00057000 
-1.7383 

1.00000 
0.00086688 
-2.6437 

1.0066 
0.0011638 
-3.5491 

1.0133 
0.0014606 
-4.4545 

1.0199 
0.0017575 
-5.3599 

Table 18. Values of n2(y), kj(y), Zfy) for 
different launch angles ßoand receiver depths y. 
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FREQUENCY = 250 HZ 
SOURCE DEPTH = 150 M 

n2(y) WITH POSITIVE GRADIENT 

RECEIVER DEPTH 
y = 0 

meters 
y = 50 
meters 

y = 100 
meters 

y = 150 
meters 

y = 200 
meters 

y = 250 
meters 

y = 300 
meters 

ßo = 84° 
«*(y) 
V(y) 
C(y> 

0.98010 
-0.010041 
3.5815 

0.98673 
-0.0026187 
0.93409 

0.99337 
0.0048032 
-1.7133 

1.00000 
0.012225 
-4.3607 

1.0066 
0.019647 
-7.0081 

1.0133 
0.027069 
-9.6555 

1.0199 
0.034491 
-12.303 

ßo = 86° 
»'(y) 
•S2(y) 
?(y> 

0.98010 
-0.016821 
6.0002 

0.98673 
-0.0093994 
3.3528 

0.99337 
-0.0019775 
0.70537 

1.00000 
0.0054445 
-1.9420 

1.0066 
0.012866 
-4.5894 

1.0133 
0.020288 
-7.2368 

1.0199 
0.027710 
-9.8842 

ß0 = 88° 
■'(y) 
k,2(y) 
C(y) 

0.98010 
-0.020903 
7.4561 

0.98673 
-0.013481 
4.8087 

0.99337 
-0.0060592 
2.1613 

1.00000 
0.0013628 
-0.48610 

1.0066 
0.0087847 
-3.1335 

1.0133 
0.016207 
-5.7809 

1.0199 
0.023629 
-8.4283 

ßo = 90° 
»'(y) 
k,J(y) 
C(y> 

0.98010 
-0.022266 
7.9422 

0.98673 
-0.014844 
5.2948 

0.99337 
-0.0074220 
2.6474 

1.00000 
0.0 
0.0 

1.0066 
0.0074220 
-2.6474 

1.0133 
0.014844 
-5.2948 

1.0199 
0.022266 
-7.9422 

ß0 = 92° 
■'(y) 
k,2(y) 
«y> 

0.98010 
-0.020903 
7.4561 

0.98673 
-0.013481 
4.8087 

0.99337 
-0.0060592 
2.1613 

1.00000 
0.0013628 
-0.48610 

1.0066 
0.0087847 
-3.1335 

1.0133 
0.016207 
-5.7809 

1.0199 
0.023629 
-8.4283 

ß0 = 94° 
■'(y) 
>S2(y) 
C(y) 

0.98010 
-0.016821 
6.0002 

0.98673 
-0.0093994 
3.3528 

0.99337 
-0.0019775 
0.70537 

1.00000 
0.0054445 
-1.9420 

1.0066 
0.012866 
-4.5894 

1.0133 
0.020288 
-7.2368 

1.0199 
0.027710 
-9.8842 

ß0 = 96° 
■2(y) 
•s5(y) 
«y> 

0.98010 
-0.010041 
3.5815 

0.98673 
-0.0026187 
0.93409 

0.99337 
0.0048032 
-1.7133 

1.00000 
0.012225 
-4.3607 

1.0066 
0.019647 
-7.0081 

1.0133 
0.027069 
-9.6555 

1.0199 
0.034491 
-12.303 

ß0 = 98° 
■'(y) 
k,2(y) 

1     C(y) 
0.98010 
-0.0005940 
0.21186 

0.98673 
0.0068280 
-2.4355 

0.99337 
0.014250 
-5.0829 

1.00000 
0.021672 
-7.7303 

1.0066 
0.029094 
-10.378 

1.0133 
0.036516 
-13.025 

1.0199 
0.043938 
-15.673 

Table 19. Values of n2(y), kj(y), £(y) for 
different launch angles ß0 and receiver depths >\ 
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FREQUENCY = 1000 HZ 
SOURCE DEPTH = 150 M 

n2(y) WITH POSITIVE GRADIENT 
RECEIVER DEPTH 

y = 0 
meters 

y = so 
meters 

y=100 
meters 

y=150 
meters 

y = 200 
meters 

y = 250 
meters 

y = 300 
meters 

«to) 
Kto) 
C(y> 

0.98010 
-0.16065 
9.0248 

0.98673 
-0.041900 
2.3538 

0.99337 
0.076852 
-4.3173 

1.00000 
0.19560 
-10.988 

1.0066 
0.31435 
-17.659 

1.0133 
0.43311 
-24.330 

1.0199 
0.55186 
-31.001 

■to) 
V(y) 
«y> 

0.98010 
-0.26914 
15.119 

0.98673 
-0.15039 
8.4484 

0.99337 
-0.031640 
1.7774 

1.00000 
0.087112 
-4.8936 

1.0066 
0.20586 
-11.565 

1.0133 
0.32461 
-18.236 

1.0199 
0.44337 
-24.907 

ßo = 88° 
■to) 
V(y) 
«y> 

0.98010 
-0.33445 
18.788 

0.98673 
-0.21570 
12.117 

0.99337 
-0.096947 
5.4461 

1.00000 
0.021804 
-1.2249 

1.0066 
0.14056 
-7.8959 

1.0133 
0.25931 
-14.567 

1.0199 
0.37806 
-21.238 

ßo = 90° 
■to) 

C(y> 

0.98010 
-0.35625 
20.013 

0.98673 
-0.23750 
13.342 

0.99337 
-0.11875 
6.6710 

1.00000 
0.0 
0.0 

1.0066 
0.11875 
-6.6710 

1.0133 
0.23750 
-13.342 

1.0199 
0.35625 
-20.013 

ß„ = 92° 
■to) 
•sto) 
C(y> 

0.98010 
-0.33445 
18.788 

0.98673 
-0.21570 
12.117 

0.99337 
-0.096947 
0.5.4461 

1.00000 
0.021804 
-1.2249 

1.0066 
0.14056 
-7.8959 

1.0133 
0.25931 
-14.567 

1.0199 
0.37806 
-21.238 

ßo = 94° 
■to) 
k,to) 
C(y) 

0.98010 
-0.26914 
15.119 

0.98673 
-0.15039 
8.4484 

0.99337 
-0.031640 
1.7774 

1.00000 
0.087112 
-4.8936 

1.0066 
0.20586 
-11.565 

1.0133 
0.32461 
-18.236 

1.0199 
0.44337 
-24.907 

ß„ = 96 
■to) 
k,to) 
C(y) 

0.98010 
-0.16065 
9.0248 

0.98673 
-0.041900 
2.3538 

0.99337 
0.076852 
-4.3173 

1.00000 
0.19560 
-10.988 

1.0066 
0.31435 
-17.659 

1.0133 
0.43311 
-24.330 

1.0199 
0.55186 
-31.001 

ßo = 98° 
■to) 
k,to) 
C(y) 

0.98010 
-0.0095034 
0.53386 

0.98673 
0.10925 
-6.1372 

0.99337 
0.22800 
-12.808 

1.00000 
0.34675 
-19.479 

1.0066 
0.46550 
-26.150 

1.0133 
0.58425 
-32.821 

1.0199 
0.70300 
-39.492 

Table 20. Values of n2(y), kj(y), £(y) for 
different launch angles ß0 and receiver depths y. 
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FREQUENCY = 50 HZ 
SOURCE DEPTH = 150 M 

n2(y) WITH NEGATIVE GRADIENT 

■to) 
Kto) 
C(y> 

ßo = 86° 
■to) 
Kto) 
«y> 

ß0 = 88° 
■to) 
>sto) 
C(y> 

RECEIVER DEPTH 
y = 0 

meters 

1.0201 
0.0013341 
4.1510 

y = 50 
meters 

1.0134 
0.0010460 
-3.2546 

1.0201 
0.0010736 
3.3402 

ß„ = 90° 
■to) 
k,to) 
C(y) 

ßo = 92° 
■to) 
•sto) 
«y> 

ßo = 94° 
■to) 
Kto) 
?(y) 

1.0201 
0.00091669 
-2.8521 

1.0201 
0.00086431 
2.6892 

1.0201 
0.00091669 
-2.8521 

1.0134 
0.00078545 
-2.4438 

1.0134 
0.00062858 
1.9557 

y=100 
meters 

1.0067 
0.00075794 
-2.3582 

1.0067 
0.00049734 
1.5474 

y = 150 
meters 

1.00000 
0.00046983 
-1.4618 

1.00000 
0.00020924 
-0.65101 

y = 200 
meters 

0.99330 
0.00018173 
-0.56542 

1.0067 
0.00034048 
-1.0593 

1.0134 
0.00057621 
-1.7928 

ß0 = 96° 
■to) 
V(y) 
C(y> 

ßo = 98° 
■to) 
Kto) 
CCv) 

1.0201 
0.0010736 
-3.3402 

1.0201 
0.0013341 
4.1510 

1.0201 
0.0016972 
-5.2806 

1.0134 
0.00062858 
1.9557 

1.0134 
0.00078545 
2.4438 

1.0067 
0.00028810 
-0.89639 

1.0067 
0.00034048 
-1.0593 

1.00000 
0.00005237 
0.16295 

1.00000 
0.0 
0.0 

1.00000 
0.00005237 
0.16295 

0.99330 
0.0000789 

0.24537 

0.99330 
-0.0002357 
0073344 

y = 250 
meters 

0.98660 
0.0001064 

0.33097 

0.98660 
-0.0003669 
1.1418 

0.98660 
0.0005238 

1.6298 

0.99330 
0.0002881 

0.89639 

0.99330 
-0.0002357 
0.73344 

1.0134 
0.0010460 
-3.2546 

1.0134 
0.0014091 
4.3842 

1.0067 
0.00049734 
-1.5474 

1.0067 
0.00075794 
2.3582 

.0067 

.0011210 
-3.4878 

1.00000 
0.00020924 
-0.65101 

1.00000 
0.00046983 
-1.4618 

1.00000 
0.00083289 
2.5914 

0.99330 
-0.0000789 
0.24537 

y = 300 
meters 

0.97990 
-0.0003945 
1.2274 

0.97990 
0.0006551 

2.0382 

0.97990 
-0.0008119 
2.5262 

0.98660 
-0.0005762 
1.7928 

0.98660 
0.0005238 

1.6298 

0.97990 
-0.0008643 
2.6892 

0.97990 
-0.0008119 
2.5262 

0.99330 
0.00018173 
0.66542 

0.99330 
.00054478 
.6950 -i 

0.98660 
-0.0003670 
1.1418 

0.98660 
-0.0001064 
0.33097 

0.98660 
0.00025668 
0.79861 

Table 21. Values of /i2(y), kjiy), £(y) for 
different launch angles ß0 and receiver depths >•. 

0.97990 
-0.0006551 
2.0382 

0.97990 
-0.0003945 
1.2274 

0.97990 
-0.0000314 
0.097780 
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FREQUENCY = 250 HZ 
SOURCE DEPTH = 150 M 

n2(y) WITH NEGATIVE GRADIENT 
RECEIVER DEPTH 

y = 0 
meters 

y=50 
meters 

y = 100 
meters 

y = 150 
meters 

y = 200 
meters 

y = 250 
meters 

y = 300 
meters 

ßo = 84° 
■*(y) 
V(y) 
C(y) 

1.0201 
0.033654 
-12.138 

1.0134 
0.026151 
-9.5165 

1.0067 
0.018948 
-6.8954 

1.00000 
0.011746 
-4.2744 

0.99330 
0.0045432 
-1.6533 

0.98660 
-0.0026594 
0.96776 

0.97990 
-0.0098620 
3.5888 

ßc = 86° 
■*(y) 

«y> 

1.0201 
0.02683» 
-9.7667 

1.0134 
0.019636 
-7.1457 

1.0067 
0.012434 
-4.5246 

1.00000 
0.0052310 
-1.9036 

0.99330 
-0.0019716 
0.71748 

0.98660 
-0.0091742 
3.3385 

0.97990 
-0.016377 
5.9596 

ß. = 88° 
■•(y) 
V(y) 
«y> 

1.0201 
0.022917 
-8.3396 

1.0134 
0.015715 
-5.7186 

1.0067 
0.0085119 
-3.0975 

1.00000 
0.0013093 
-0.47647 

0.99330 
-0.0058933 
2.1446 

0.98660 
-0.013096 
4.7656 

0.97990 
-0.020298 
7.3867 

ßo = 90° 

k,2(y) 
C(y> 

1.0201 
0.021608 
-7.8632 

1.0134 
0.014405 
-5.2421 

1.0067 
0.0072026 
-2.6211 

1.00000 
0.0 
0.0 

0.99330 
-0.0072026 
2.6211 

0.98660 
-0.014405 
5.2421 

0.97990 
-0.021608 
7.8632 

ßo = 92° 
■"(y) 
V(y) 
?(y> 

1.0201 
0.022917 
-8.3396 

1.0134 
0.015715 
-5.7186 

1.0067 
0.0085119 
-3.0975 

1.00000 
0.0013093 
-0.47647 

0.99330 
-0.0058933 
2.1446 

0.98660 
-0.013096 
4.7656 

0.97990 
-0.020298 
7.3867 

ßo = 94° 
■'(y) 
k,2(y) 
C(y) 

1.0201 
0.026839 
-9.7667 

1.0134 
0.019636 
-7.1457 

1.0067 
0.012434 
-4.5246 

1.00000 
0.0052310 
-1.9036 

0.99330 
-0.0019716 
0.71748 

0.98660 
-0.0091742 
3.3385 

0.97990 
-0.016377 
5.9596 

ß0 = 96° 
■*(y) 
V(y) 
C(y> 

1.0201 
0.033354 
-12.138 

1.0134 
0.026151 
-9.5165 

1.0067 
0.018948 
-6.8954 

1.00000 
0.011746 
-4.2744 

0.99330 
0.0045432 
-1.6533 

0.98660 
-0.0026594 
0.96776 

0.97990 
-0.0098620 
3.5888 

ß0 = 98° 
"'(y) 
k,2(y) 
C(y) 

1.0201 
0.042430 
-15.440 

1.0134 
0.035227 
-12.819 

1.0067 
0.028025 
-10.198         1 

1.00000 
0.020822 
-7.5773 

0.99330 
0.013620 
-4.9562 

0.98660 
0.0064169 
-2.3351 

0.97990 
-0.0007857 
0.28591 

Table 22. Values of/z2(y), kjly), £(y) for 
different launch angles ßo and receiver depths j. 
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FREQUENCY = 1000 HZ 
SOURCE DEPTH = 150 M 

n2(y) WITH NEGATIVE GRADIENT 
RECEIVER DEPTH 

y = o 
meters 

y = 50 
meters 

y = 100 
meters 

y = i50 
meters 

y = 200 
meters 

y = 250 
Dieters 

y = 300 
meters 

ßo = 84° 
■%) 
k,2(y) 
C(y) 

1.0201 
0.53366 
-30.5B5 

1.0134 
0.41842 
-23.980 

1.0067 
0.30317 
-17.375 

1.00000 
0.18793 
-10.771 

0.99330 
0.072692 
-4.1661 

0.98660 
-0.042550 
2.4386 

0.97990 
-0.15779 
9.0432 

ßo = 86° 
■"(y) 

V(y) 
C(y) 

1.0201 
0.42942 
-24.611 

1.0134 
0.31418 
-18.006 

1.0067 
0.19894 
-11.401 

1.00000 
0.083696 
-4.7967 

0.99330 
-0.031546 
1.8079 

0.98660 
-0.14679 
8.4126 

0.97990 
-0.26203 
15.017 

ßc = 88° 

k,2(y) 
C(y) 

1.0201 
0.36667 
-21.015 

1.0134 
0.25143 
-14.410 

1.0067 
0.13619 
-7.8053 

1.00000 
0.020949 
-1.2006 

0.99330 
-0.094292 
5.4040 

0.98660 
-0.20953 
12.009 

0.97990 
-0.32478 
18.613 

ß„ = 90° 
"'(y) 
k,2(y) 
C(y> 

1.0201 
0.34572 
-19.814 

1.0134 
0.23048 
-13.209 

1.0067 
0.11524 
-6.6046 

1.00000 
0.0 
0.0 

0.99330 
-0.11524 
6.6046 

0.98660 
-0.23048 
13.209 

0.97990 
-0.34572 
19.814 

ß„ = 92° 
""(y) 

>S2(y) 
C(y> 

1.0201 
0.36667 
-21.015 

1.0134 
0.25143 
-14.410 

1.0067 
0.13619 
-7.8053 

1.00000 
0.020949 
-1.2006 

0.99330 
-0.094292 
5.4040 

0.98660 
-0.20953 
12.009 

0.97990 
-0.32478 
18.613 

ßc = 94° 
■"(y) 
k,2(y) 
C(» 

1.0201 
0.42942 
-24.611 

1.0134 
0.31418 
-18.006 

1.0067 
0.19894 
-11.401 

1.00000 
0.083696 
-4.7967 

0.99330 
-0.031546 
1.8079 

0.98660 
-0.14679 
8.4126 

0.97990 
-0.26203 
15.017 

ß„ = 96° 
«^(y) 
•s2(y) 
C(y) 

1.0201 
0.53366 
-30.585 

1.0134 
0.41842 
-23.980 

1.0067 
0.30317 
-17.375 

1.00000 
0.18793 
-10.771 

0.99330 
0.072692 
-4.1661 

0.98660 
-0.042550 
2.4386 

0.97990 
-0.15779 
9.0432 

ß„ = 98° 
■"(y) 
V(y) 
C(y> 

1.0201           1 
3.67888         1 
-38.907         1 

1.0134 
0.56364         1 
-32.303         | 

1.0067 
0.44840 
-25.698 

1.00000 
0.33315 
-19.094 

0.99330 
0.21791          1 
-12.489         1 

0.98660 
0.10267 
-5.8842 

0.97990 
-0.012571 
0.72045 

Table 23. Values of n2(y), kf(y), C(y) for 
different launch angles ß0 and receiver depths j. 
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Figure 12. Plot of £(y) versus depth v for different launch angles ß0: 
n2(y) with positive gradient. 
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Figure 13. Plot of £(y) versus depth y for different launch angles ß0 

n2(y) with positive gradient. 
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Figure 14. Plot of C(y) versus depth y for different launch angles ß0 

n2(y) with positive gradient. 
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Figure 15. Plot of £(y) versus depth y for different launch angles ß0 

n2(y) with negative gradient. 
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Fignre 16. Plot of £(y) versus depth y for different launch angles ßo: 
n2(y) with negative gradient. 
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Figure 17. Plot of £(y) versus depth v for different launch angles ß0: 
n2(y) with negative gradient. 
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